Soybean cyst nematode(SCN, Heterodera glycines(I.)) is one of the most important soil-borne pathogens for soybeans. In plant parasitic nematodes, including SCN, lysozyme plays important roles in the innate defense sys...Soybean cyst nematode(SCN, Heterodera glycines(I.)) is one of the most important soil-borne pathogens for soybeans. In plant parasitic nematodes, including SCN, lysozyme plays important roles in the innate defense system. In this study, two new lysozyme genes(Hg-lys1 and Hg-lys2) from SCN were cloned and characterized. The in situ hybridization analyses indicated that the transcripts of both Hg-lys1 and Hg-lys2 accumulated in the intestine of SCN. The q RT-PCR analyses showed that both Hg-lys1 and Hg-lys2 were upregulated after SCN second stage juveniles(J2 s) were exposed to the Grampositive bacteria Bacillus thuringiensis, Bacillus subtilis or Staphylococcus aureus. Knockdown of the identified lysozyme genes by in vitro RNA interference caused a significant decrease in the survival rate of SCN. All of the obtained results indicate that lysozyme is very important in the defense system and survival of SCN.展开更多
基金supported the Central Public-Interest Scientific Institution Basal Research Fund, China (Y2019GH03)the Special Fund for Agro-Scientific Research in the Public Interest of China (210503114)SINOGRAIN Ⅱ (CHN-17/0019): Technological Innovation to Support Environmentally-Friendly Food Production and Food Safety Under a Changing Climate-Opportunities and Challenges for Norway-China Cooperation
文摘Soybean cyst nematode(SCN, Heterodera glycines(I.)) is one of the most important soil-borne pathogens for soybeans. In plant parasitic nematodes, including SCN, lysozyme plays important roles in the innate defense system. In this study, two new lysozyme genes(Hg-lys1 and Hg-lys2) from SCN were cloned and characterized. The in situ hybridization analyses indicated that the transcripts of both Hg-lys1 and Hg-lys2 accumulated in the intestine of SCN. The q RT-PCR analyses showed that both Hg-lys1 and Hg-lys2 were upregulated after SCN second stage juveniles(J2 s) were exposed to the Grampositive bacteria Bacillus thuringiensis, Bacillus subtilis or Staphylococcus aureus. Knockdown of the identified lysozyme genes by in vitro RNA interference caused a significant decrease in the survival rate of SCN. All of the obtained results indicate that lysozyme is very important in the defense system and survival of SCN.