The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential ...The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential investigations in this area are first considered to prepare an idea with respect to state-of-the-art.The insight proposed here is organized to present attitude cascade control approach including the low thrust in connection with the high thrust to be implemented,while the aforementioned Monte-Carlo based method is carried out to guarantee the approach performance.It is noted that the investigated outcomes are efficient to handle a class of space systems presented via the center of mass and the moments of inertial.And also a number of profiles for the thrust vector and the misalignments as the disturbances all vary in its span of nominal variations.The acquired results are finally analyzed in line with some well-known benchmarks to verify the approach efficiency.The key core of finding in the research is to propose a novel 3-axis control approach to deal with all the mentioned uncertainties of space systems under control,in a synchronous manner,as long as the appropriate models in the low-high thrusts are realized.展开更多
In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative ac...In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.展开更多
This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's co...This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.展开更多
It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. ...It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. In 1985, J, Rauch & M. Reed have provad the existence and uniqueness of piecewise smooth solution for展开更多
A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section f...A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section for most encounter events that occur in a near-circular orbit. Therefore, the probability of collision caused by differences in both altitude of the orbit in the radial direction and the probability of collision caused by differences in arrival time in the cross section are calculated. The net probability of collision is expressed as an explicit expression by multiplying the above two components. Numerical cases are applied to test this method by comparing the results with the general method. The results indicate that this method is valid for most encounter events that occur in near-circular orbits.展开更多
Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Cons...Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in mukispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian-Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band.展开更多
We examine theoretically the performance of an Hg0.77Cd0.23Te based p-n photodetector/HFET optical receiver due to its possible application at 10.6 μm free space optical communication system at high bit rate.A rigoro...We examine theoretically the performance of an Hg0.77Cd0.23Te based p-n photodetector/HFET optical receiver due to its possible application at 10.6 μm free space optical communication system at high bit rate.A rigorous noise model of the receiver has been developed for this purpose.We calculate the total noise and sensitivity of the receiver.The front-end of the receiver exhibits a sensitivity of -45 dBm at a bit rate of 1 Gb/s and -30 dBm at a bit rate of 10 Gb/s,and the total mean-square noise curren t〈i2n〉=5×10-15 A2 at a bit rate of 1 Gb/s an d〈i2n〉 =10-12 A2 at a bit rate of 10 Gb/s,and a 3-dB bandwidth of 10 GHz.展开更多
Considering the fact that the general theory of relativity has become an in- extricable part of deep space missions, we investigate the relativistic transformation between the proper time of an onboard clock τ and th...Considering the fact that the general theory of relativity has become an in- extricable part of deep space missions, we investigate the relativistic transformation between the proper time of an onboard clock τ and the Geocentric Coordinate Time (TCG) for Mars missions. By connecting τ with this local timescale associated with the Earth, we extend previous works which focus on the transformation between τ and the Barycentric Coordinate Time (TCB). (TCB is the global coordinate time for the whole solar system.) For practical convenience, the relation between τ and TCG is recast to directly depend on quantities which can be read from ephemerides. We find that the difference between τ and TCG can reach the level of about 0.2 seconds in a year. To distinguish various sources in the transformation, we numerically calculate the contributions caused by the Sun, eight planets, three large asteroids and the space- craft. It is found that if the threshold of 1 microsecond is adopted, this transformation must include effects due to the Sun, Venus, the Moon, Mars, Jupiter, Saturn and the velocities of the spacecraft and Earth.展开更多
In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock o...In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock onboard a spacecraft orbiting Mars and the Barycentric Coordinate Time (TCB) by taking the clock offset into ac- count and investigate its accessibility by Fourier analysis on the residuals after fitting the ^--TCB curve in terms of n-th order polynomials. We find that if the accuracy of a clock can achieve better than ~ 10-5 s or ~ 10-6 s (depending on the type of clock offset) in one year after calibration, the relativistic effects on the difference between 7- and TCB will need to be carefully considered.展开更多
With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper tim...With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper time - of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard com- puter because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.展开更多
Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in ter...Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in terrestrial communications.Accordingly,the Consultative Committee for Space Data Systems(CCSDS) developed CCSDS File Delivery Protocol(CFDP),which sets standards of efficient file delivery service capable of transferring files to and from mass memory located in the space segment.In CFDP,four optional acknowledge modes are supported to make the communication more reliable.In this paper,we gave a general introduction of typical communication process in CFDP and analysis of its four Negative Acknowledgement(NAK) modes on the respect of file delivery delay and times of retransmission.We found out that despite the shortest file delivery delay,immediate NAK mode suffers from the problem that frequent retransmission may probably lead to network congestion.Thus,we proposed a new mode,the error counter-based NAK mode.By simulation of the case focused on the link between a deep space probe on Mars and a ter-restrial station on Earth,we concluded that error counter-based NAK mode has successfully reduced the retransmission times at negligible cost of certain amount of file delivery delay.展开更多
We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discus...We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.展开更多
As the first step in relativistic time transfer for a Mars lander from its proper time to the time scale at the ground station, we investigate the transformation between proper time and Areocentric Coordinate Time (...As the first step in relativistic time transfer for a Mars lander from its proper time to the time scale at the ground station, we investigate the transformation between proper time and Areocentric Coordinate Time (TCA) in the framework of IAU Resolutions. TCA is a local time scale for Mars, which is analogous to the Geocentric Coordinate Time (TCG) for Earth. This transformation contains two contributions: inter- hal and external. The internal contribution comes from the gravitational potential and the rotation of Mars. The external contribution is due to the gravitational fields of other bodies (except Mars) in the Solar System. When the (in)stability of an onboard clock is assumed to be at the level of 10-13, we find that the internal contribution is dominated by the gravitational potential of spherical Mars with necessary corrections asso- ciated with the height of the lander on the areoid, the dynamic form factor of Mars, the flattening of the areoid and the spin rate of Mars. For the external contribution, we find the gravitational effects from other bodies in the Solar System can be safely neglected in this case after calculating their maximum values.展开更多
As the second step of relativistic time transfer for a Mars lander,we investigate the transformation between Areocentric Coordinate Time(TCA)and Barycentric Coordinate Time(TCB)in the framework of IAU Resolutions....As the second step of relativistic time transfer for a Mars lander,we investigate the transformation between Areocentric Coordinate Time(TCA)and Barycentric Coordinate Time(TCB)in the framework of IAU Resolutions.TCA is a local time scale for Mars,which is analogous to the Geocentric Coordinate Time(TCG)for Earth.This transformation has two parts:contributions associated with gravitational bodies and those depending on the position of the lander.After setting the instability of an onboard clock to 10;and considering that the uncertainty in time is about 3.2 microseconds after one Earth year,we find that the contributions of the Sun,Mars,Jupiter and Saturn in the leading term associated with these bodies can reach a level exceeding the threshold and must be taken into account.Other terms can be safely ignored in this transformation for a Mars lander.展开更多
Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are den...Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are dense and that the system is observable. We prove that any outputtrajectory of the system determines f and h and M up to a homeomorphism.If M is a compactAbelian topological group and f is an ergodic translation, then any output trajectory determinesthe system up to a translation and a group isomorphism of the group.展开更多
Open complex giant systems and it's methodology: meta synthesis from qualitative to quantitative approach was proposed by Chinese scientists in the early 1990. Space Military Systems is an open complex giant system,...Open complex giant systems and it's methodology: meta synthesis from qualitative to quantitative approach was proposed by Chinese scientists in the early 1990. Space Military Systems is an open complex giant system, which is discussed in details from the point of view of systematology in this paper. The hall for workshop of meta-synthetic engineering can be the methodology for studying Space Military Systems and it's relevant problems solving.展开更多
In this paper the existence of discrete vector solutions with bounded second order quotientsfor the difference systems of nonlinear parabolic system is established by the fixed point technique,and then the absolute an...In this paper the existence of discrete vector solutions with bounded second order quotientsfor the difference systems of nonlinear parabolic system is established by the fixed point technique,and then the absolute and relative stability for the general difference schemes is justified in thesense of continuous dependence of the discrete vector solution of the difference schemes on thediscrete data of the original problems.展开更多
The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is pi...The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is picked out with the CCSDS LDPC code. The problem with its generator matrix is illustrated and overcome by a shortened code with some middle code bits deleted. In correspondence, its parity check matrix is also revised with the new quasi-cyclic(QC)-LDPC code. Second, a fast decoding scheme for general QC-LDPC codes is proposed based on flipping bits and fetching words. Besides, a lightweight CCSDS LDPC code based Mc Eliece system can be set up with such codes. The repaired CCSDS LDPC code is supposed to be still useful for communications and storages, and the normalized decoding algorithm is also efficient for general QC-LDPC codes.展开更多
文摘The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential investigations in this area are first considered to prepare an idea with respect to state-of-the-art.The insight proposed here is organized to present attitude cascade control approach including the low thrust in connection with the high thrust to be implemented,while the aforementioned Monte-Carlo based method is carried out to guarantee the approach performance.It is noted that the investigated outcomes are efficient to handle a class of space systems presented via the center of mass and the moments of inertial.And also a number of profiles for the thrust vector and the misalignments as the disturbances all vary in its span of nominal variations.The acquired results are finally analyzed in line with some well-known benchmarks to verify the approach efficiency.The key core of finding in the research is to propose a novel 3-axis control approach to deal with all the mentioned uncertainties of space systems under control,in a synchronous manner,as long as the appropriate models in the low-high thrusts are realized.
基金supported by the National Natural Science Fandation of China (6067208960772075)
文摘In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.
文摘This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.
基金This paper is supported by the National Foundations.
文摘It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. In 1985, J, Rauch & M. Reed have provad the existence and uniqueness of piecewise smooth solution for
基金Supported by the National Natural Science Foundation of China
文摘A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section for most encounter events that occur in a near-circular orbit. Therefore, the probability of collision caused by differences in both altitude of the orbit in the radial direction and the probability of collision caused by differences in arrival time in the cross section are calculated. The net probability of collision is expressed as an explicit expression by multiplying the above two components. Numerical cases are applied to test this method by comparing the results with the general method. The results indicate that this method is valid for most encounter events that occur in near-circular orbits.
基金supported by the National High Technology Research and Development Program of China (Grant No. 863-2-5-1-13B)
文摘Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in mukispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian-Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band.
文摘We examine theoretically the performance of an Hg0.77Cd0.23Te based p-n photodetector/HFET optical receiver due to its possible application at 10.6 μm free space optical communication system at high bit rate.A rigorous noise model of the receiver has been developed for this purpose.We calculate the total noise and sensitivity of the receiver.The front-end of the receiver exhibits a sensitivity of -45 dBm at a bit rate of 1 Gb/s and -30 dBm at a bit rate of 10 Gb/s,and the total mean-square noise curren t〈i2n〉=5×10-15 A2 at a bit rate of 1 Gb/s an d〈i2n〉 =10-12 A2 at a bit rate of 10 Gb/s,and a 3-dB bandwidth of 10 GHz.
基金Supported by the National Natural Science Foundation of China
文摘Considering the fact that the general theory of relativity has become an in- extricable part of deep space missions, we investigate the relativistic transformation between the proper time of an onboard clock τ and the Geocentric Coordinate Time (TCG) for Mars missions. By connecting τ with this local timescale associated with the Earth, we extend previous works which focus on the transformation between τ and the Barycentric Coordinate Time (TCB). (TCB is the global coordinate time for the whole solar system.) For practical convenience, the relation between τ and TCG is recast to directly depend on quantities which can be read from ephemerides. We find that the difference between τ and TCG can reach the level of about 0.2 seconds in a year. To distinguish various sources in the transformation, we numerically calculate the contributions caused by the Sun, eight planets, three large asteroids and the space- craft. It is found that if the threshold of 1 microsecond is adopted, this transformation must include effects due to the Sun, Venus, the Moon, Mars, Jupiter, Saturn and the velocities of the spacecraft and Earth.
基金Supported by the National Natural Science Foundation of China
文摘In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock onboard a spacecraft orbiting Mars and the Barycentric Coordinate Time (TCB) by taking the clock offset into ac- count and investigate its accessibility by Fourier analysis on the residuals after fitting the ^--TCB curve in terms of n-th order polynomials. We find that if the accuracy of a clock can achieve better than ~ 10-5 s or ~ 10-6 s (depending on the type of clock offset) in one year after calibration, the relativistic effects on the difference between 7- and TCB will need to be carefully considered.
基金Supported by the National Natural Science Foundation of China
文摘With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper time - of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard com- puter because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.
文摘Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in terrestrial communications.Accordingly,the Consultative Committee for Space Data Systems(CCSDS) developed CCSDS File Delivery Protocol(CFDP),which sets standards of efficient file delivery service capable of transferring files to and from mass memory located in the space segment.In CFDP,four optional acknowledge modes are supported to make the communication more reliable.In this paper,we gave a general introduction of typical communication process in CFDP and analysis of its four Negative Acknowledgement(NAK) modes on the respect of file delivery delay and times of retransmission.We found out that despite the shortest file delivery delay,immediate NAK mode suffers from the problem that frequent retransmission may probably lead to network congestion.Thus,we proposed a new mode,the error counter-based NAK mode.By simulation of the case focused on the link between a deep space probe on Mars and a ter-restrial station on Earth,we concluded that error counter-based NAK mode has successfully reduced the retransmission times at negligible cost of certain amount of file delivery delay.
文摘We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.
基金funded by the National Natural Science Foundation of China(Grant Nos.11573015 and J1210039)the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.14DZ2276100)
文摘As the first step in relativistic time transfer for a Mars lander from its proper time to the time scale at the ground station, we investigate the transformation between proper time and Areocentric Coordinate Time (TCA) in the framework of IAU Resolutions. TCA is a local time scale for Mars, which is analogous to the Geocentric Coordinate Time (TCG) for Earth. This transformation contains two contributions: inter- hal and external. The internal contribution comes from the gravitational potential and the rotation of Mars. The external contribution is due to the gravitational fields of other bodies (except Mars) in the Solar System. When the (in)stability of an onboard clock is assumed to be at the level of 10-13, we find that the internal contribution is dominated by the gravitational potential of spherical Mars with necessary corrections asso- ciated with the height of the lander on the areoid, the dynamic form factor of Mars, the flattening of the areoid and the spin rate of Mars. For the external contribution, we find the gravitational effects from other bodies in the Solar System can be safely neglected in this case after calculating their maximum values.
基金funded by the National Natural Science Foundation of China (Grant No. 11573015 and No. J1210039)
文摘As the second step of relativistic time transfer for a Mars lander,we investigate the transformation between Areocentric Coordinate Time(TCA)and Barycentric Coordinate Time(TCB)in the framework of IAU Resolutions.TCA is a local time scale for Mars,which is analogous to the Geocentric Coordinate Time(TCG)for Earth.This transformation has two parts:contributions associated with gravitational bodies and those depending on the position of the lander.After setting the instability of an onboard clock to 10;and considering that the uncertainty in time is about 3.2 microseconds after one Earth year,we find that the contributions of the Sun,Mars,Jupiter and Saturn in the leading term associated with these bodies can reach a level exceeding the threshold and must be taken into account.Other terms can be safely ignored in this transformation for a Mars lander.
文摘Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are dense and that the system is observable. We prove that any outputtrajectory of the system determines f and h and M up to a homeomorphism.If M is a compactAbelian topological group and f is an ergodic translation, then any output trajectory determinesthe system up to a translation and a group isomorphism of the group.
文摘Open complex giant systems and it's methodology: meta synthesis from qualitative to quantitative approach was proposed by Chinese scientists in the early 1990. Space Military Systems is an open complex giant system, which is discussed in details from the point of view of systematology in this paper. The hall for workshop of meta-synthetic engineering can be the methodology for studying Space Military Systems and it's relevant problems solving.
文摘In this paper the existence of discrete vector solutions with bounded second order quotientsfor the difference systems of nonlinear parabolic system is established by the fixed point technique,and then the absolute and relative stability for the general difference schemes is justified in thesense of continuous dependence of the discrete vector solution of the difference schemes on thediscrete data of the original problems.
基金Supported by the Guangzhou Innovation Leading Team Program (201909010008)。
文摘The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is picked out with the CCSDS LDPC code. The problem with its generator matrix is illustrated and overcome by a shortened code with some middle code bits deleted. In correspondence, its parity check matrix is also revised with the new quasi-cyclic(QC)-LDPC code. Second, a fast decoding scheme for general QC-LDPC codes is proposed based on flipping bits and fetching words. Besides, a lightweight CCSDS LDPC code based Mc Eliece system can be set up with such codes. The repaired CCSDS LDPC code is supposed to be still useful for communications and storages, and the normalized decoding algorithm is also efficient for general QC-LDPC codes.