Using inter-satellite range data, the combined autonomous orbit determina- tion problem of a lunar satellite and a probe on some special orbits is studied in this paper. The problem is firstly studied in the circular ...Using inter-satellite range data, the combined autonomous orbit determina- tion problem of a lunar satellite and a probe on some special orbits is studied in this paper. The problem is firstly studied in the circular restricted three-body problem, and then generalized to the real force model of the Earth-Moon system. Two kinds of spe- cial orbits are discussed: collinear libration point orbits and distant retrograde orbits. Studies show that the orbit determination accuracy in both cases can reach that of the observations. Some important properties of the system are carefully studied. These findings should be useful in the future engineering implementation of this conceptual study.展开更多
Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the ...Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The nature of the problem is also investigated in order to find an effective solution. Several. methods of solution are discussed. The feasibility of the methods is demonstrated by their application to a simulation.展开更多
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to...This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numer- ical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturba- tion for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.展开更多
Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (D...Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.展开更多
There are plentiful asteroids moving periodically around their central primaries, such as the Sun. Due to the perturbation of the central primary, the gravitational force of the perturbed asteroid system varies period...There are plentiful asteroids moving periodically around their central primaries, such as the Sun. Due to the perturbation of the central primary, the gravitational force of the perturbed asteroid system varies periodically. In this paper, based on the idea of integrating the solar gravitational force as a part of the system instead of treating it as perturbation, the parametric resonance response is investigated. A novel type of stable parametric resonance orbits has been detected. It is found that the steady-state motion amplitude of parametric resonance orbit is determined by the frequency-response equation. The stability of the novel orbits has also been demonstrated. The new type of orbits may contribute to possible asteroid exploration missions.展开更多
A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section f...A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section for most encounter events that occur in a near-circular orbit. Therefore, the probability of collision caused by differences in both altitude of the orbit in the radial direction and the probability of collision caused by differences in arrival time in the cross section are calculated. The net probability of collision is expressed as an explicit expression by multiplying the above two components. Numerical cases are applied to test this method by comparing the results with the general method. The results indicate that this method is valid for most encounter events that occur in near-circular orbits.展开更多
Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface...Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth’s magnetic field will be subject to perturbations from the Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft’s orientation. We assume that the spacecraft is moving in the Earth’s magnetic field in an elliptical orbit under the effects of gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole.A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to mass ratio(α*). Stable orbits are identified for various values of α*. The main parameters for stabilization of the spacecraft are α*and the difference between the components of the moment of inertia for the spacecraft.展开更多
A new non-simplified model of formation flying is derived in the presence of an oblate main- body and third-body perturbation. In the proposed model, considering the perturbation of the third- body in an inclined orbi...A new non-simplified model of formation flying is derived in the presence of an oblate main- body and third-body perturbation. In the proposed model, considering the perturbation of the third- body in an inclined orbit, the effect of obliquity (axial tilt) of the main-body is becoming important and has been propounded in the absolute motion of a reference satellite and the relative motion of a follower satellite. From a new point of view, J2 perturbed relative motion equations and considering a disturbing body in an elliptic inclined three dimensional orbit, are derived using Lagrangian mechanics based on accurate introduced perturbed reference satellite motion. To validate the accuracy of the model presented in this study, an auxiliary model was constructed as the Main-body Center based Relative Motion (MCRM) model. Finally, the importance of the main-body's obliquity is demonstrated by several examples related to the Earth-Moon system in relative motion and lunar satellite formation keeping. The main-body's obliquity has a remarkable effect on formation keeping in the examined in-track and projected circular orbit (PCO) formations.展开更多
本文基于最新发布的SGP4/SDP4(Simplified General Perturbation Version 4/Simplified Deep-space Perturbation Version 4)模型设计了一套定轨方案,从空间目标库中挑选出不同类型和轨道参数的1120个目标进行计算,定量给出了SGP4/SDP4...本文基于最新发布的SGP4/SDP4(Simplified General Perturbation Version 4/Simplified Deep-space Perturbation Version 4)模型设计了一套定轨方案,从空间目标库中挑选出不同类型和轨道参数的1120个目标进行计算,定量给出了SGP4/SDP4模型处理不同类型空间目标的定轨预报精度.结果表明:近地目标定轨精度为百米量级;半同步和同步轨道定轨精度平均为0.7和1.9km。椭圆轨道目标的定轨精度与偏心率有关,除少数e>0.8的椭圆轨道目标,绝大多数椭圆轨道目标定轨误差均小于10km。用SGP4/SDP4模型对近地目标预报3天,半同步轨道预报30天,同步轨道预报15天,椭圆轨道预报1天,预报误差一般不超过40km。展开更多
基金Supported by the National Natural Science Foundation of China
文摘Using inter-satellite range data, the combined autonomous orbit determina- tion problem of a lunar satellite and a probe on some special orbits is studied in this paper. The problem is firstly studied in the circular restricted three-body problem, and then generalized to the real force model of the Earth-Moon system. Two kinds of spe- cial orbits are discussed: collinear libration point orbits and distant retrograde orbits. Studies show that the orbit determination accuracy in both cases can reach that of the observations. Some important properties of the system are carefully studied. These findings should be useful in the future engineering implementation of this conceptual study.
文摘Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The nature of the problem is also investigated in order to find an effective solution. Several. methods of solution are discussed. The feasibility of the methods is demonstrated by their application to a simulation.
文摘This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numer- ical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturba- tion for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.
基金Supported by the National Natural Science Foundation of China
文摘Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.
基金supported in part by the National Natural Science Foundation of China(Project Nos.11772009,11972007 and 11832002)the Beijing Municipal Natural Science Foundation(Project No.1192002)the International Research Cooperation Seed Fund of Beijing University of Technology(No.2018B15)。
文摘There are plentiful asteroids moving periodically around their central primaries, such as the Sun. Due to the perturbation of the central primary, the gravitational force of the perturbed asteroid system varies periodically. In this paper, based on the idea of integrating the solar gravitational force as a part of the system instead of treating it as perturbation, the parametric resonance response is investigated. A novel type of stable parametric resonance orbits has been detected. It is found that the steady-state motion amplitude of parametric resonance orbit is determined by the frequency-response equation. The stability of the novel orbits has also been demonstrated. The new type of orbits may contribute to possible asteroid exploration missions.
基金Supported by the National Natural Science Foundation of China
文摘A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section for most encounter events that occur in a near-circular orbit. Therefore, the probability of collision caused by differences in both altitude of the orbit in the radial direction and the probability of collision caused by differences in arrival time in the cross section are calculated. The net probability of collision is expressed as an explicit expression by multiplying the above two components. Numerical cases are applied to test this method by comparing the results with the general method. The results indicate that this method is valid for most encounter events that occur in near-circular orbits.
文摘Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth’s magnetic field will be subject to perturbations from the Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft’s orientation. We assume that the spacecraft is moving in the Earth’s magnetic field in an elliptical orbit under the effects of gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole.A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to mass ratio(α*). Stable orbits are identified for various values of α*. The main parameters for stabilization of the spacecraft are α*and the difference between the components of the moment of inertia for the spacecraft.
文摘A new non-simplified model of formation flying is derived in the presence of an oblate main- body and third-body perturbation. In the proposed model, considering the perturbation of the third- body in an inclined orbit, the effect of obliquity (axial tilt) of the main-body is becoming important and has been propounded in the absolute motion of a reference satellite and the relative motion of a follower satellite. From a new point of view, J2 perturbed relative motion equations and considering a disturbing body in an elliptic inclined three dimensional orbit, are derived using Lagrangian mechanics based on accurate introduced perturbed reference satellite motion. To validate the accuracy of the model presented in this study, an auxiliary model was constructed as the Main-body Center based Relative Motion (MCRM) model. Finally, the importance of the main-body's obliquity is demonstrated by several examples related to the Earth-Moon system in relative motion and lunar satellite formation keeping. The main-body's obliquity has a remarkable effect on formation keeping in the examined in-track and projected circular orbit (PCO) formations.
文摘本文基于最新发布的SGP4/SDP4(Simplified General Perturbation Version 4/Simplified Deep-space Perturbation Version 4)模型设计了一套定轨方案,从空间目标库中挑选出不同类型和轨道参数的1120个目标进行计算,定量给出了SGP4/SDP4模型处理不同类型空间目标的定轨预报精度.结果表明:近地目标定轨精度为百米量级;半同步和同步轨道定轨精度平均为0.7和1.9km。椭圆轨道目标的定轨精度与偏心率有关,除少数e>0.8的椭圆轨道目标,绝大多数椭圆轨道目标定轨误差均小于10km。用SGP4/SDP4模型对近地目标预报3天,半同步轨道预报30天,同步轨道预报15天,椭圆轨道预报1天,预报误差一般不超过40km。