In the first part of this paper,we describe briefly the mid and long-term plan of Chinese space astronomy,its preliminary study program,the current status of satellite missions undertaken, and the current status of as...In the first part of this paper,we describe briefly the mid and long-term plan of Chinese space astronomy,its preliminary study program,the current status of satellite missions undertaken, and the current status of astronomy experiments in China's manned space flight program.In the second part,the recent research progress made in the fields of solar physics is summarized briefly, including solar vector magnetic field,solar flares,CME and filaments,solar radio and nonthermal processes,EUV waves,MHD waves and coronal waves,solar model and helioseismology,solar wind and behavior of solar cycle.展开更多
The activities of Chinese space solar physics in 2018–2020 are going on smoothly.Besides the missions of ASO-S and CHASE which are in the engineering phases,there are quite a number of projects which are in the pre-s...The activities of Chinese space solar physics in 2018–2020 are going on smoothly.Besides the missions of ASO-S and CHASE which are in the engineering phases,there are quite a number of projects which are in the pre-study stage(conception study)or have finished the pre-study stage,constituting a rich pond for the selection of next solar mission(s).This paper describes in brief the status of all these related projects.展开更多
To follow up the last report two years ago,what happened from 2020 to 2022 deserves specially mentioning:CHASE was successfully launched on 14 October 2021;ASO-S will finish soon its Phase-D study and is scheduled for...To follow up the last report two years ago,what happened from 2020 to 2022 deserves specially mentioning:CHASE was successfully launched on 14 October 2021;ASO-S will finish soon its Phase-D study and is scheduled for launch in October 2022;four solar mission candidates are being undertaken the engineering project evaluations;three solar mission proposals are being undertaken the background project evaluations;there are also quite a number of pre-study space solar physics projects getting either newly supported or finished.This paper describes in brief the status of all these related projects.展开更多
The main activities of Chinese space solar physics in 2012–2014 include: to continue studying the mid and long-term(2016–2030) plan of Chinese space solar physics; to arrange a group of pre-study projects of space s...The main activities of Chinese space solar physics in 2012–2014 include: to continue studying the mid and long-term(2016–2030) plan of Chinese space solar physics; to arrange a group of pre-study projects of space solar physics; to initiate and continue a few solar mission-level projects.This paper summarizes all these activities briefly.展开更多
The activities of Chinese space solar physics in 2014—2016 were mainly undertaken within the framework of Strategic Priority Program on Space Science,sponsored by CAS,which include:to accomplish the last version for ...The activities of Chinese space solar physics in 2014—2016 were mainly undertaken within the framework of Strategic Priority Program on Space Science,sponsored by CAS,which include:to accomplish the last version for the mid and long-term(2016—2030) plan of Chinese space solar physics;to subsidy a few of pre-study projects of space solar physics;to implement two intensive study projects,ASO-S and SPORT.This paper summarizes these activities briefly.展开更多
The activities of Chinese space solar physics in 2016–2018 can be divided into two categories: prestudy projects and mission-level projects. Both projects were undertaken smoothly. Especially the ASO-S,after several ...The activities of Chinese space solar physics in 2016–2018 can be divided into two categories: prestudy projects and mission-level projects. Both projects were undertaken smoothly. Especially the ASO-S,after several years' promotion, finally got formal approval at the end of 2017. This paper describes in brief the status of all related projects.展开更多
The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key...The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5 nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H. and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.展开更多
The Advanced Space-based Solar Observatory(ASO-S)was formally approved at the end of 2017.In the past two years,ASO-S underwent its official Phase-B and Phase-C studies.The Phase-B study was successfully accomplished ...The Advanced Space-based Solar Observatory(ASO-S)was formally approved at the end of 2017.In the past two years,ASO-S underwent its official Phase-B and Phase-C studies.The Phase-B study was successfully accomplished by the end of April 2019,and the Phase-C study is being now undertaken until August 2020.Then the flight model is planned to finish within 16 months.Around the end of 2021,ASO-S will be ready in the launch state.We briefly summarize the history of ASO-S,the phase-B studies,and the phase-C studies.展开更多
The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST sat...The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST satellite platform and payloads have been tackled, which lay solid scientific and technological foundations for engineering prototype phase of the SST project. At present the SST project undergoes evaluation by CNSA and CAS so as to enter the engineering prototype phase of the SST project if it is finally approved.展开更多
The Advanced Space-based Solar Observatory(ASO-S)marked China's first comprehensive solar mission in space.Drawing upon the previous reports covering 2018-2020 and 2020-2022,we present here an update on the ASO-S ...The Advanced Space-based Solar Observatory(ASO-S)marked China's first comprehensive solar mission in space.Drawing upon the previous reports covering 2018-2020 and 2020-2022,we present here an update on the ASO-S made from 2022 to 2024.In August 2022,ASO-S completed its Phase D study and was successfully launched on October 9,2022.The commissioning phase was carried out and concluded within the first nine months following the launch.The data and associated analysis software have been opened to the community and the research on the early ASO-S data has been well developed.We anticipate also the achievements in data research pertaining to ASO-S in the near future.展开更多
The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key...The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.展开更多
Motion is a ground-laying concept in physics. Its meaning however depends fundamentally on the assumptions about the nature of empty space. In Einstein’s theory of relativity (TR), no absolute references can be defin...Motion is a ground-laying concept in physics. Its meaning however depends fundamentally on the assumptions about the nature of empty space. In Einstein’s theory of relativity (TR), no absolute references can be defined and only relative motions are relevant. This however makes it impossible to understand why the motion of matter obeys the principle of inertia and why there exist laws of motion. The Higgs theory introduces radical changes in the current view about the nature of empty space. It introduces the idea that space is filled up by a real and very powerful quantum fluid medium, giving mass to the elementary particles by the Higgs mechanism. This Higgs Quantum Space (HQS) is locally an absolute reference for rest and for motions. It not only recovers an intrinsic meaning for motions, however literally governs the inertial motion of matter-energy. In this new scenario, the velocity of light is fixed with respect to the local HQS and velocity of matter with respect to the local HQS and not relative velocities are responsible for all the effects of motion. The Higgs mechanism is too responsible for the gravitational dynamics;because it is mass that creates the gravitational fields. Actually several clear experimental observations demonstrate that the HQS is moving round the sun consistently with the planetary motions. The present work therefore replaces Einstein’s spacetime curvature by a Keplerian velocity field of the HQS. This velocity field creates the ingenious outside-inside centrifuge mechanism of gravity. It also causes all the observed effects of the gravitational fields on light and on clocks.展开更多
This research focuse<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> on multiple facts regard</span><span style="font-family:Verdana;&q...This research focuse<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> on multiple facts regard</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the earth gravity and the space mechanism, mainly on the solar systems including the Sun and the planets belonging to it. Our solar system consists of our star, the Sun, and everything bound to it by gravity based on Albert Einstein and Isaac Newton theories. The planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">dozens of moons, millions of asteroids, Comets and meteoroids </span><span style="font-family:Verdana;">[<a href="#ref1">1</a>]</span><span></span><span><span></span></span><span style="font-family:Verdana;">. Also, </span><span style="font-family:Verdana;">it </span><span style="font-family:Verdana;">will discuss about The Geocentric model and how scientifically proofed that the Earth is not orbiting the sun as it has a fixed position in the universe with the rotation around its axis and the sun is orbiting the Earth in one solar year. The output of the Geocentric model led to that the gravity is a feature generated by the planet itself to be measured reference to the weight granted to the matter.</span>展开更多
The Advanced Space-based Solar Observatory(ASO-S)started officially its engineering phases at the beginning of 2018.In the past two years from 2020 to 2022 ASO-S completed smoothly the Phase-C study and is now underta...The Advanced Space-based Solar Observatory(ASO-S)started officially its engineering phases at the beginning of 2018.In the past two years from 2020 to 2022 ASO-S completed smoothly the Phase-C study and is now undertaking the Phase-D study.The launch date is finally set in October of 2022.We here briefly summarize the progress of ASO-S from the late Phase-C to the current Phase-D studies,and plan the scientific affairs around the launch.展开更多
文摘In the first part of this paper,we describe briefly the mid and long-term plan of Chinese space astronomy,its preliminary study program,the current status of satellite missions undertaken, and the current status of astronomy experiments in China's manned space flight program.In the second part,the recent research progress made in the fields of solar physics is summarized briefly, including solar vector magnetic field,solar flares,CME and filaments,solar radio and nonthermal processes,EUV waves,MHD waves and coronal waves,solar model and helioseismology,solar wind and behavior of solar cycle.
基金Supported by Chinese Academy of Sciences(XDA15052200)by National Natural Science Foundation of China(U1731241,11921003 and U1931138)。
文摘The activities of Chinese space solar physics in 2018–2020 are going on smoothly.Besides the missions of ASO-S and CHASE which are in the engineering phases,there are quite a number of projects which are in the pre-study stage(conception study)or have finished the pre-study stage,constituting a rich pond for the selection of next solar mission(s).This paper describes in brief the status of all these related projects.
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15052200)National Natural Science Foundation of China(11921003,U1931138)。
文摘To follow up the last report two years ago,what happened from 2020 to 2022 deserves specially mentioning:CHASE was successfully launched on 14 October 2021;ASO-S will finish soon its Phase-D study and is scheduled for launch in October 2022;four solar mission candidates are being undertaken the engineering project evaluations;three solar mission proposals are being undertaken the background project evaluations;there are also quite a number of pre-study space solar physics projects getting either newly supported or finished.This paper describes in brief the status of all these related projects.
文摘The main activities of Chinese space solar physics in 2012–2014 include: to continue studying the mid and long-term(2016–2030) plan of Chinese space solar physics; to arrange a group of pre-study projects of space solar physics; to initiate and continue a few solar mission-level projects.This paper summarizes all these activities briefly.
基金Supported by National Natural Science Foundation of China(11233008,11427803)
文摘The activities of Chinese space solar physics in 2014—2016 were mainly undertaken within the framework of Strategic Priority Program on Space Science,sponsored by CAS,which include:to accomplish the last version for the mid and long-term(2016—2030) plan of Chinese space solar physics;to subsidy a few of pre-study projects of space solar physics;to implement two intensive study projects,ASO-S and SPORT.This paper summarizes these activities briefly.
基金Supported by CAS(XDA15052200)by NNSFC(11427803,U1731241)
文摘The activities of Chinese space solar physics in 2016–2018 can be divided into two categories: prestudy projects and mission-level projects. Both projects were undertaken smoothly. Especially the ASO-S,after several years' promotion, finally got formal approval at the end of 2017. This paper describes in brief the status of all related projects.
文摘The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5 nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H. and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.
基金Supported by Chinese Academy of Sciences(XDA15052200)by National Natural Science Foundation of China(U1731241,11921003,U1931138)。
文摘The Advanced Space-based Solar Observatory(ASO-S)was formally approved at the end of 2017.In the past two years,ASO-S underwent its official Phase-B and Phase-C studies.The Phase-B study was successfully accomplished by the end of April 2019,and the Phase-C study is being now undertaken until August 2020.Then the flight model is planned to finish within 16 months.Around the end of 2021,ASO-S will be ready in the launch state.We briefly summarize the history of ASO-S,the phase-B studies,and the phase-C studies.
文摘The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST satellite platform and payloads have been tackled, which lay solid scientific and technological foundations for engineering prototype phase of the SST project. At present the SST project undergoes evaluation by CNSA and CAS so as to enter the engineering prototype phase of the SST project if it is finally approved.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0560000,XDA15320000)the National Key R&D Program of China(2022 YFF0503002)the National Natural Science Foundation of China(12233012,12333010,11921003)。
文摘The Advanced Space-based Solar Observatory(ASO-S)marked China's first comprehensive solar mission in space.Drawing upon the previous reports covering 2018-2020 and 2020-2022,we present here an update on the ASO-S made from 2022 to 2024.In August 2022,ASO-S completed its Phase D study and was successfully launched on October 9,2022.The commissioning phase was carried out and concluded within the first nine months following the launch.The data and associated analysis software have been opened to the community and the research on the early ASO-S data has been well developed.We anticipate also the achievements in data research pertaining to ASO-S in the near future.
文摘The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.
文摘Motion is a ground-laying concept in physics. Its meaning however depends fundamentally on the assumptions about the nature of empty space. In Einstein’s theory of relativity (TR), no absolute references can be defined and only relative motions are relevant. This however makes it impossible to understand why the motion of matter obeys the principle of inertia and why there exist laws of motion. The Higgs theory introduces radical changes in the current view about the nature of empty space. It introduces the idea that space is filled up by a real and very powerful quantum fluid medium, giving mass to the elementary particles by the Higgs mechanism. This Higgs Quantum Space (HQS) is locally an absolute reference for rest and for motions. It not only recovers an intrinsic meaning for motions, however literally governs the inertial motion of matter-energy. In this new scenario, the velocity of light is fixed with respect to the local HQS and velocity of matter with respect to the local HQS and not relative velocities are responsible for all the effects of motion. The Higgs mechanism is too responsible for the gravitational dynamics;because it is mass that creates the gravitational fields. Actually several clear experimental observations demonstrate that the HQS is moving round the sun consistently with the planetary motions. The present work therefore replaces Einstein’s spacetime curvature by a Keplerian velocity field of the HQS. This velocity field creates the ingenious outside-inside centrifuge mechanism of gravity. It also causes all the observed effects of the gravitational fields on light and on clocks.
文摘This research focuse<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> on multiple facts regard</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the earth gravity and the space mechanism, mainly on the solar systems including the Sun and the planets belonging to it. Our solar system consists of our star, the Sun, and everything bound to it by gravity based on Albert Einstein and Isaac Newton theories. The planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">dozens of moons, millions of asteroids, Comets and meteoroids </span><span style="font-family:Verdana;">[<a href="#ref1">1</a>]</span><span></span><span><span></span></span><span style="font-family:Verdana;">. Also, </span><span style="font-family:Verdana;">it </span><span style="font-family:Verdana;">will discuss about The Geocentric model and how scientifically proofed that the Earth is not orbiting the sun as it has a fixed position in the universe with the rotation around its axis and the sun is orbiting the Earth in one solar year. The output of the Geocentric model led to that the gravity is a feature generated by the planet itself to be measured reference to the weight granted to the matter.</span>
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15052200)National Natural Science Foundation of China(11921003,U1931138)。
文摘The Advanced Space-based Solar Observatory(ASO-S)started officially its engineering phases at the beginning of 2018.In the past two years from 2020 to 2022 ASO-S completed smoothly the Phase-C study and is now undertaking the Phase-D study.The launch date is finally set in October of 2022.We here briefly summarize the progress of ASO-S from the late Phase-C to the current Phase-D studies,and plan the scientific affairs around the launch.