Impressive advances in space technology are enabling complex missions, with potentially significant and long term impacts on human life and activities. In the vision of future space exploration, communication links am...Impressive advances in space technology are enabling complex missions, with potentially significant and long term impacts on human life and activities. In the vision of future space exploration, communication links among planets, satel ites, spacecrafts and crewed vehicles wil be designed according to a new paradigm, known as the disruption tolerant networking. In this scenario, space channel peculiarities impose a massive reengineering of many of the protocols usually adopted in terrestrial networks; among them, security solutions are to be deeply reviewed, and tailored to the specific space requirements. Security is to be provided not only to the payload data exchanged on the network, but also to the telecommands sent to a spacecraft, along possibly differentiated paths. Starting from the secure space telecommand design developed by the Consultative Committee for Space Data Systems as a response to agency-based requirements, an adaptive link layer security architecture is proposed to address some of the chal enges for future space networks. Based on the analysis of the communication environment and the error diffusion properties of the authentication algorithms, a suitable mechanism is proposed to classify frame retransmission requests on the basis of the originating event (error or security attack) and reduce the impact of security operations. An adaptive algorithm to optimize the space control protocol, based on estimates of the time varying space channel, is also presented. The simulation results clearly demonstrate that the proposed architecture is feasible and efficient, especially when facing malicious attacks against frame transmission.展开更多
This research paper describes the design and implementation of the Consultative Committee for Space Data Systems (CCSDS) standards REF _Ref401069962 \r \h \* MERGEFORMAT [1] for Space Data Link Layer Protocol (SDLP). ...This research paper describes the design and implementation of the Consultative Committee for Space Data Systems (CCSDS) standards REF _Ref401069962 \r \h \* MERGEFORMAT [1] for Space Data Link Layer Protocol (SDLP). The primer focus is the telecommand (TC) part of the standard. The implementation of the standard was in the form of DLL functions using C++ programming language. The second objective of this paper was to use the DLL functions with OMNeT++ simulating environment to create a simulator in order to analyze the mean end-to-end Packet Delay, maximum achievable application layer throughput for a given fixed link capacity and normalized protocol overhead, defined as the total number of bytes transmitted on the link in a given period of time (e.g. per second) divided by the number of bytes of application data received at the application layer model data sink. In addition, the DLL was also integrated with Ground Support Equipment Operating System (GSEOS), a software system for space instruments and small spacecrafts especially suited for low budget missions. The SDLP is designed for rapid test system design and high flexibility for changing telemetry and command requirements. GSEOS can be seamlessly moved from EM/FM development (bench testing) to flight operations. It features the Python programming language as a configuration/scripting tool and can easily be extended to accommodate custom hardware interfaces. This paper also shows the results of the simulations and its analysis.展开更多
针对航天测控领域中上行遥控业务的协议体系选择与可靠性设计问题,在对我国现行国军标技术指标要求与现有航天测控系统天地基遥控技术特点进行归纳梳理的基础上,基于空间段信息传输无线链路特点与CCSDS(Consultative Committee for Spac...针对航天测控领域中上行遥控业务的协议体系选择与可靠性设计问题,在对我国现行国军标技术指标要求与现有航天测控系统天地基遥控技术特点进行归纳梳理的基础上,基于空间段信息传输无线链路特点与CCSDS(Consultative Committee for Space Data Systems,空间数据系统咨询委员会)标准规范,研究给出了适用于我国航天测控任务的空间段遥控协议体系与可靠性措施,利用梳理统计方法对上行遥控体制进行了数学建模分析,并与CCSDS给出的应用算例进行了对比分析。分析结果表明,所涉及的上行遥控体制与CCSDS标准规范的工作效能基本相当,能够满足我国航天任务上行遥控任务使用需求。展开更多
基金supported by the National Natural Science Fundation of China(61101073)
文摘Impressive advances in space technology are enabling complex missions, with potentially significant and long term impacts on human life and activities. In the vision of future space exploration, communication links among planets, satel ites, spacecrafts and crewed vehicles wil be designed according to a new paradigm, known as the disruption tolerant networking. In this scenario, space channel peculiarities impose a massive reengineering of many of the protocols usually adopted in terrestrial networks; among them, security solutions are to be deeply reviewed, and tailored to the specific space requirements. Security is to be provided not only to the payload data exchanged on the network, but also to the telecommands sent to a spacecraft, along possibly differentiated paths. Starting from the secure space telecommand design developed by the Consultative Committee for Space Data Systems as a response to agency-based requirements, an adaptive link layer security architecture is proposed to address some of the chal enges for future space networks. Based on the analysis of the communication environment and the error diffusion properties of the authentication algorithms, a suitable mechanism is proposed to classify frame retransmission requests on the basis of the originating event (error or security attack) and reduce the impact of security operations. An adaptive algorithm to optimize the space control protocol, based on estimates of the time varying space channel, is also presented. The simulation results clearly demonstrate that the proposed architecture is feasible and efficient, especially when facing malicious attacks against frame transmission.
文摘This research paper describes the design and implementation of the Consultative Committee for Space Data Systems (CCSDS) standards REF _Ref401069962 \r \h \* MERGEFORMAT [1] for Space Data Link Layer Protocol (SDLP). The primer focus is the telecommand (TC) part of the standard. The implementation of the standard was in the form of DLL functions using C++ programming language. The second objective of this paper was to use the DLL functions with OMNeT++ simulating environment to create a simulator in order to analyze the mean end-to-end Packet Delay, maximum achievable application layer throughput for a given fixed link capacity and normalized protocol overhead, defined as the total number of bytes transmitted on the link in a given period of time (e.g. per second) divided by the number of bytes of application data received at the application layer model data sink. In addition, the DLL was also integrated with Ground Support Equipment Operating System (GSEOS), a software system for space instruments and small spacecrafts especially suited for low budget missions. The SDLP is designed for rapid test system design and high flexibility for changing telemetry and command requirements. GSEOS can be seamlessly moved from EM/FM development (bench testing) to flight operations. It features the Python programming language as a configuration/scripting tool and can easily be extended to accommodate custom hardware interfaces. This paper also shows the results of the simulations and its analysis.
文摘针对航天测控领域中上行遥控业务的协议体系选择与可靠性设计问题,在对我国现行国军标技术指标要求与现有航天测控系统天地基遥控技术特点进行归纳梳理的基础上,基于空间段信息传输无线链路特点与CCSDS(Consultative Committee for Space Data Systems,空间数据系统咨询委员会)标准规范,研究给出了适用于我国航天测控任务的空间段遥控协议体系与可靠性措施,利用梳理统计方法对上行遥控体制进行了数学建模分析,并与CCSDS给出的应用算例进行了对比分析。分析结果表明,所涉及的上行遥控体制与CCSDS标准规范的工作效能基本相当,能够满足我国航天任务上行遥控任务使用需求。