Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of...Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of the spatial mismatch between high demand and low supply,it is of great significance to clarify the evolution mechanism of green space to undertake national spatial planning,protect the natural strategic resources in the urban fringe area,and promote the sustainable development of the“three living spaces.”The study focuses on the Zunyi City Center,selecting the 20 years of rapid development following its establishment as a city as the study period.It explores the dynamic evolution of green space and the main driving forces during different periods using remote-sensing image data.The study shows that from 2003 to 2023,the total scale of green space has an obvious decreasing trend along with the expansion of the urban built-up area.A large amount of arable land is being converted to construction land,resulting in a sudden decrease in arable land area.In the past 10 years,the comprehensive land use dynamics have accelerated.Still,the spatial difference has gradually narrowed,indicating that the overall development intensity of Zunyi City’s central urban area has increased.There is a gradual spread of the trend to the hilly areas.The limiting effect of the mountainous natural environment on the city’s development has gradually diminished under the superposition of external factors,such as economic development,industrial technological upgrading,and policy orientation so the importance of the effective protection and rational utilization of urban green space has become more prominent.展开更多
The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and ...The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas.展开更多
Chalcidoidea is one of the most biologically diverse groups among Hymenoptera.Members are characterized by extraordinary parasitic lifestyles and extensive host ranges,among which several species attack plants or serv...Chalcidoidea is one of the most biologically diverse groups among Hymenoptera.Members are characterized by extraordinary parasitic lifestyles and extensive host ranges,among which several species attack plants or serve as pollinators.However,higher-level chalcidoid relationships remain controversial.Here,we performed mitochondrial phylogenomic analyses for major clades(18out of 25 families)of Chalcidoidea based on 139 mitochondrial genomes.The compositional heterogeneity and conflicting backbone relationships in Chalcidoidea were assessed using various datasets and tree inferences.Our phylogenetic results supported the monophyly of 16families and polyphyly of Aphelinidae and Pteromalidae.Our preferred topology recovered the relationship(Mymaridae+(Signiphoridae+Leucospidae)+(Chalcididae+((Perilampidae+Eucharitidae)+remaining Chalcidoidea))).The monophyly of Agaonidae and Sycophaginae was rejected,while the gall-associated((Megastigmidae+Ormyridae)+(Ormocerinae+Eurytomidae))relationship was supported in most results.A six-gene inversion may be a synapomorphy for most families,whereas other derived gene orders may introduce confusion in phylogenetic signals at deeper nodes.Dating estimates suggested that Chalcidoidea arose near the Jurassic/Cretaceous boundary and that two dynamic shifts in diversification occurred during the evolution of Chalcidoidea.We hypothesized that the potential codiversification between chalcidoids and their hosts may be crucial for accelerating the diversification of Chalcidoidea.Ancestral state reconstruction analyses supported the hypothesis that gallinducers were mainly derived from parasitoids of gallinducers,while other gall-inducers were derived from phytophagous groups.Taken together,these findings advance our understanding of mitochondrial genome evolution in the major interfamilial phylogeny of Chalcidoidea.展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities ...By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.展开更多
Qamdo block in the east Tibet lay in front of southwestern margin of the Yangtze landmass and was one of many micro\|blocks between the Gondwana and the Eurasia continents .It played an important role in the developme...Qamdo block in the east Tibet lay in front of southwestern margin of the Yangtze landmass and was one of many micro\|blocks between the Gondwana and the Eurasia continents .It played an important role in the development of the multi\|arc\|basin system of the north sector of the Jinsha\|lancang\|nujiang rivers . Space\|time texture of the block reflected the tectonic evolution of the east Tibet and neighbouring areas directly, providing important information for evolutionary history of the east Tethys.1\ Crustal structure of the Qamdo block\;Crustal structure of the Qamdo block is characterized by “double basement and double cover”.By double basement is meant the Middle—Upper Proterozoic crystalline basement and the Lower Paleozoic folded basement. The Middle—Upper Proterozoic crystalline basement is composed of medium\|high\|grade metamorphic biotite\|plagiogneiss, plagioclase\|amphibole schist, nacritid intercalated with (intermediate\|) basic metavolcanite. These rocks are characteristic of strong ductile deformed metamorphic core complex. The zircon of gneiss yields an U\|Pb age of 1680~2200Ma while the basic metavolcanite give a Sm\|Nd age of 1594Ma.The Lower Paleozoic folded basement consists of the Lower Ordovician and Silurian. Basement of the Qamdo block is similar to that of the Yangtze landmass. By double cover we mean two covers consisting of the Upper Paleozoic and Mesozoic, respectively. The Upper Paleozoic is composed of carbonate and clastic rock which were formed from epicontinental to back\|arc basins. The Mesozoic consists of the Upper Triassic—Cretaceous concordant formations which were formed in a back\|arc foreland basin.Sequences of the formations are molasse, neritic carbonate, paralic coal\|bearing rock and terrigenous red clastic rock from the bottom to the top.展开更多
The general space-time composition was analyzed starting in ancient times. During the previous three millenniums, to explain elementary physical phenomena, the world was twice admitted to be immersed into an “aether...The general space-time composition was analyzed starting in ancient times. During the previous three millenniums, to explain elementary physical phenomena, the world was twice admitted to be immersed into an “aether”. Presently the “aether” is assumed to be asymptotically close to the vacuum. This approximation is included in the foundation of the special theory of relativity.展开更多
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem...Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.展开更多
We restudy the Lee-Weinberg time-evolution equation including the R-parity violation. We carefullyanalyze the intluence of the boundary conditions, equation of state, SUSY parameters, especially the R-parity violation...We restudy the Lee-Weinberg time-evolution equation including the R-parity violation. We carefullyanalyze the intluence of the boundary conditions, equation of state, SUSY parameters, especially the R-parity violation,and other factors on the time-evolution of the SUSY cold dark matter. Our numerical results show that without Rparity violation, only two ranges 20 < mx01 < 30 GeV and 75 < mx01 < 110 GeV can be consistent with data, if30 < mx01 < 75 GeV, there must be at least two kinds of heavy particles contributing to the cold dark matter. However,with the R-parity violation, the heavy neutralino can be dark matter constituent, but it must decay and the R-parityviolation parameter is constrained by the present data.展开更多
Observational study shows that, in some cases, the frontal structure displays the features of gravitative flows. It seems that the formation of discontinuity is an important problem in the study of the frontogenesis w...Observational study shows that, in some cases, the frontal structure displays the features of gravitative flows. It seems that the formation of discontinuity is an important problem in the study of the frontogenesis which is usually defined as an increasing of the scalar gradient. In this paper, the characteristic features of air flow with initial imbalance between the wind and the density fields are studied. Much attention is paid on the condition for the formation of discontinuity and its time scale. It is found that the initial distribution of density plays an important role in the formation of the discontinuity which happens in short time duration.展开更多
We study how can an angular momentum coherent state |τ> keeps its form-invariant during time evolution governed by the Hamiltonian H = f(t)J++ f^*(t)J-+ g(t)Jz. We discuss this topic in the context of boson realiz...We study how can an angular momentum coherent state |τ> keeps its form-invariant during time evolution governed by the Hamiltonian H = f(t)J++ f^*(t)J-+ g(t)Jz. We discuss this topic in the context of boson realization of |τ>. By employing the entangled state representation |ζ> and deriving a new binomial theorem involving two-subscript Hermite polynomials, we derive the wave function <ζ|τ>, which turns out to be a single-subscript Hermite polynomial. Based on this result the maintenance of angular momentum coherent state during time evolution is examined, and the value of τ(t) is totally determined by the parameters involved in the Hamiltonian.展开更多
On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the def...On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.展开更多
In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isotherma...In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.展开更多
Currently, rural residential space can't continue to meet the growing demand for tourism receptions because of the development of rural tourism, resulting in the evolution and reconstruction of residential space i...Currently, rural residential space can't continue to meet the growing demand for tourism receptions because of the development of rural tourism, resulting in the evolution and reconstruction of residential space in rural areas. In the past decade, rural tourism has become the main driving force for industrial transformation and economic growth in rural areas of China. Taking three tourism-oriented villages in Jizhou District, Tianjin, namely Xiaochuanfangyu Village, Dongshuichang Village and Maojiayu Village, as the objects of the research, this paper analyzed the influence of rural tourism on the evolution of rural residential space from the perspectives of the spatial pattern and architectural style at the microscopic scale.展开更多
Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal mo...Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.展开更多
The planet Earth is an integrated system, in which its multi-spheres are coupled, from the space to the inner core. Whether the space environment in short to long terms has been controlled by the earth's interior ...The planet Earth is an integrated system, in which its multi-spheres are coupled, from the space to the inner core. Whether the space environment in short to long terms has been controlled by the earth's interior process is contentious. In the past several decades,space weather and space climate have been extensively studied based on either observation data measured directly by man-made instruments or ancient data inferred indirectly from some historical medium of past thousands of years. The acquired knowledge greatly helps us to understand the dynamic processes in the space environment of modern Earth, which has a strong magnetic dipole and an oxygen-rich atmosphere. However, no data is available for ancient space weather and climate(>5 ka). Here, we propose to take the advantage of " space-diversity" to build a " generalized planetary space family", to reconcile the ancient space environment evolution of planet Earth from modern observations of other planets in our solar system. Such a method could also in turn give us a valuable insight into other planets' evolution.展开更多
Abstract: Microstructural evolution in a new kind of aluminum (A1) alloy with the chemical composition of AI-8.82Zn-2.08Mg- 0.80Cu-3.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is comple...Abstract: Microstructural evolution in a new kind of aluminum (A1) alloy with the chemical composition of AI-8.82Zn-2.08Mg- 0.80Cu-3.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470℃, 1 h), while the primary phase A13(Sc,Zr) remains stable. This is due to Sc and Zr additions into the A1 al- loy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumotion and favorable mechanical properties is obtained.展开更多
Traditional villages in the Pearl River Delta are known as "Lingnan water village".Urbanization affects the style of traditional villages in three ways.It also presents a positive side under the background o...Traditional villages in the Pearl River Delta are known as "Lingnan water village".Urbanization affects the style of traditional villages in three ways.It also presents a positive side under the background of new urbanization.The living space of Xiaozhou Village has the unique characteristics of Lingnan water village.At the same time,it is obviously affected by urbanization.Industrialization and commercialization continue to promote the villagers to dismantle the old and build new ones until it becomes a village in the city.The evolution of the traditional living space is reflected in three aspects:being nibbled away or even disappeared,destroying the traditional style,function disappearance or transformation.In the later stage of urbanization,some living spaces have been repaired and updated.展开更多
This study compares results on reconstructing the ancestral state of characters and ancestral areas of distribution in Cornaceae to gain insights into the impact of using different analytical methods. Ancestral charac...This study compares results on reconstructing the ancestral state of characters and ancestral areas of distribution in Cornaceae to gain insights into the impact of using different analytical methods. Ancestral charac-ter state reconstructions were compared among three methods (parsimony, maximum likelihood, and stochastic character mapping) using MESQUITE and a full Bayesian method in BAYESTRAITS and inferences of ancestral area distribution were compared between the parsimony-based dispersal-vicariance analysis (DIVA) and a newly developed maximum likelihood (ML) method. Results indicated that among the six inflorescence and fruit char-acters examined, "perfect" binary characters (no homoplasy, no polymorphism within terminals, and no missing data) are little affected by choice of method, while homoplasious characters and missing data are sensitive to methods used. Ancestral areas at deep nodes of the phylogeny are substantially different between DIVA and ML and strikingly different between analyses including and excluding fossils at three deepest nodes. These results, while raising caution in making conclusions on trait evolution and historical biogeography using conventional methods, demonstrate a limitation in our current understanding of character evolution and biogeography. The biogeographic history favored by the ML analyses including fossils suggested the origin and early radiation of Cornus likely occurred in the late Cretaceous and earliest Tertiary in Europe and intercontinental disjunctions in three lineages involved movements across the North Atlantic Land Bridge (BLB) in the early and mid Tertiary. This result is congruent with the role of NALB for post-Eocene migration and in connecting tropical floras in North America and Africa, and in eastern Asia and South America. However, alternative hypotheses with an origin in eastern Asia and early Trans-Beringia migrations of the genus cannot be ruled out.展开更多
文摘Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of the spatial mismatch between high demand and low supply,it is of great significance to clarify the evolution mechanism of green space to undertake national spatial planning,protect the natural strategic resources in the urban fringe area,and promote the sustainable development of the“three living spaces.”The study focuses on the Zunyi City Center,selecting the 20 years of rapid development following its establishment as a city as the study period.It explores the dynamic evolution of green space and the main driving forces during different periods using remote-sensing image data.The study shows that from 2003 to 2023,the total scale of green space has an obvious decreasing trend along with the expansion of the urban built-up area.A large amount of arable land is being converted to construction land,resulting in a sudden decrease in arable land area.In the past 10 years,the comprehensive land use dynamics have accelerated.Still,the spatial difference has gradually narrowed,indicating that the overall development intensity of Zunyi City’s central urban area has increased.There is a gradual spread of the trend to the hilly areas.The limiting effect of the mountainous natural environment on the city’s development has gradually diminished under the superposition of external factors,such as economic development,industrial technological upgrading,and policy orientation so the importance of the effective protection and rational utilization of urban green space has become more prominent.
基金supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Fundamental Research Funds for China University of Mining and Technology(Beijing):Doctoral Top-notch Innovative Talents Cultivation Fund(No.BBJ2023018,BBJ2023023)the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-20-113-20).
文摘The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas.
基金supported by the Key International Joint Research Program of the National Natural Science Foundation of China(31920103005)General Program of the National Natural Science Foundation of China(32070467)+3 种基金Provincial Key R&D Program of Zhejiang,China(2021C02045)Key Project of Laboratory of Lingnan Modern Agriculture(NT2021003)Fundamental Research Funds for the Central UniversitiesSpecial Research Fund for Distinguished Scholars of Zhejiang Province,China(2018R51004)。
文摘Chalcidoidea is one of the most biologically diverse groups among Hymenoptera.Members are characterized by extraordinary parasitic lifestyles and extensive host ranges,among which several species attack plants or serve as pollinators.However,higher-level chalcidoid relationships remain controversial.Here,we performed mitochondrial phylogenomic analyses for major clades(18out of 25 families)of Chalcidoidea based on 139 mitochondrial genomes.The compositional heterogeneity and conflicting backbone relationships in Chalcidoidea were assessed using various datasets and tree inferences.Our phylogenetic results supported the monophyly of 16families and polyphyly of Aphelinidae and Pteromalidae.Our preferred topology recovered the relationship(Mymaridae+(Signiphoridae+Leucospidae)+(Chalcididae+((Perilampidae+Eucharitidae)+remaining Chalcidoidea))).The monophyly of Agaonidae and Sycophaginae was rejected,while the gall-associated((Megastigmidae+Ormyridae)+(Ormocerinae+Eurytomidae))relationship was supported in most results.A six-gene inversion may be a synapomorphy for most families,whereas other derived gene orders may introduce confusion in phylogenetic signals at deeper nodes.Dating estimates suggested that Chalcidoidea arose near the Jurassic/Cretaceous boundary and that two dynamic shifts in diversification occurred during the evolution of Chalcidoidea.We hypothesized that the potential codiversification between chalcidoids and their hosts may be crucial for accelerating the diversification of Chalcidoidea.Ancestral state reconstruction analyses supported the hypothesis that gallinducers were mainly derived from parasitoids of gallinducers,while other gall-inducers were derived from phytophagous groups.Taken together,these findings advance our understanding of mitochondrial genome evolution in the major interfamilial phylogeny of Chalcidoidea.
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
文摘By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.
文摘Qamdo block in the east Tibet lay in front of southwestern margin of the Yangtze landmass and was one of many micro\|blocks between the Gondwana and the Eurasia continents .It played an important role in the development of the multi\|arc\|basin system of the north sector of the Jinsha\|lancang\|nujiang rivers . Space\|time texture of the block reflected the tectonic evolution of the east Tibet and neighbouring areas directly, providing important information for evolutionary history of the east Tethys.1\ Crustal structure of the Qamdo block\;Crustal structure of the Qamdo block is characterized by “double basement and double cover”.By double basement is meant the Middle—Upper Proterozoic crystalline basement and the Lower Paleozoic folded basement. The Middle—Upper Proterozoic crystalline basement is composed of medium\|high\|grade metamorphic biotite\|plagiogneiss, plagioclase\|amphibole schist, nacritid intercalated with (intermediate\|) basic metavolcanite. These rocks are characteristic of strong ductile deformed metamorphic core complex. The zircon of gneiss yields an U\|Pb age of 1680~2200Ma while the basic metavolcanite give a Sm\|Nd age of 1594Ma.The Lower Paleozoic folded basement consists of the Lower Ordovician and Silurian. Basement of the Qamdo block is similar to that of the Yangtze landmass. By double cover we mean two covers consisting of the Upper Paleozoic and Mesozoic, respectively. The Upper Paleozoic is composed of carbonate and clastic rock which were formed from epicontinental to back\|arc basins. The Mesozoic consists of the Upper Triassic—Cretaceous concordant formations which were formed in a back\|arc foreland basin.Sequences of the formations are molasse, neritic carbonate, paralic coal\|bearing rock and terrigenous red clastic rock from the bottom to the top.
文摘The general space-time composition was analyzed starting in ancient times. During the previous three millenniums, to explain elementary physical phenomena, the world was twice admitted to be immersed into an “aether”. Presently the “aether” is assumed to be asymptotically close to the vacuum. This approximation is included in the foundation of the special theory of relativity.
基金Supported by the Science and Technology Cooperation Project of CNPC-SWPU Innovation Alliance (2020CX010101)National Natural Science Foundation of China (91955204)。
文摘Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.
文摘We restudy the Lee-Weinberg time-evolution equation including the R-parity violation. We carefullyanalyze the intluence of the boundary conditions, equation of state, SUSY parameters, especially the R-parity violation,and other factors on the time-evolution of the SUSY cold dark matter. Our numerical results show that without Rparity violation, only two ranges 20 < mx01 < 30 GeV and 75 < mx01 < 110 GeV can be consistent with data, if30 < mx01 < 75 GeV, there must be at least two kinds of heavy particles contributing to the cold dark matter. However,with the R-parity violation, the heavy neutralino can be dark matter constituent, but it must decay and the R-parityviolation parameter is constrained by the present data.
文摘Observational study shows that, in some cases, the frontal structure displays the features of gravitative flows. It seems that the formation of discontinuity is an important problem in the study of the frontogenesis which is usually defined as an increasing of the scalar gradient. In this paper, the characteristic features of air flow with initial imbalance between the wind and the density fields are studied. Much attention is paid on the condition for the formation of discontinuity and its time scale. It is found that the initial distribution of density plays an important role in the formation of the discontinuity which happens in short time duration.
基金Project supported by the National Natural Science Foundation of China(Grant No.11347026)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2016AM03 and ZR2017MA011)
文摘We study how can an angular momentum coherent state |τ> keeps its form-invariant during time evolution governed by the Hamiltonian H = f(t)J++ f^*(t)J-+ g(t)Jz. We discuss this topic in the context of boson realization of |τ>. By employing the entangled state representation |ζ> and deriving a new binomial theorem involving two-subscript Hermite polynomials, we derive the wave function <ζ|τ>, which turns out to be a single-subscript Hermite polynomial. Based on this result the maintenance of angular momentum coherent state during time evolution is examined, and the value of τ(t) is totally determined by the parameters involved in the Hamiltonian.
基金Supported by the the National Natural Science Foundation of China(U22A201550).
文摘On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.
基金Funded by Guangxi Science Foundation(No. 0639006)
文摘In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.
基金Sponsored by Humanities and Social Sciences Fund of the Ministry of Education(15YJCZH229)National Natural Science Foundation of China(51608091)
文摘Currently, rural residential space can't continue to meet the growing demand for tourism receptions because of the development of rural tourism, resulting in the evolution and reconstruction of residential space in rural areas. In the past decade, rural tourism has become the main driving force for industrial transformation and economic growth in rural areas of China. Taking three tourism-oriented villages in Jizhou District, Tianjin, namely Xiaochuanfangyu Village, Dongshuichang Village and Maojiayu Village, as the objects of the research, this paper analyzed the influence of rural tourism on the evolution of rural residential space from the perspectives of the spatial pattern and architectural style at the microscopic scale.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900502the National Science Foundation of China under Grant 62001179the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111。
文摘Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.
基金supported by the National Science Foundation of China (41525016,41474155,41661164034,41621004)Macao FDCT grant 001/2016/AFJsupported by the Thousand Young Talents Program of China
文摘The planet Earth is an integrated system, in which its multi-spheres are coupled, from the space to the inner core. Whether the space environment in short to long terms has been controlled by the earth's interior process is contentious. In the past several decades,space weather and space climate have been extensively studied based on either observation data measured directly by man-made instruments or ancient data inferred indirectly from some historical medium of past thousands of years. The acquired knowledge greatly helps us to understand the dynamic processes in the space environment of modern Earth, which has a strong magnetic dipole and an oxygen-rich atmosphere. However, no data is available for ancient space weather and climate(>5 ka). Here, we propose to take the advantage of " space-diversity" to build a " generalized planetary space family", to reconcile the ancient space environment evolution of planet Earth from modern observations of other planets in our solar system. Such a method could also in turn give us a valuable insight into other planets' evolution.
基金financially supported by the High Technology Research and Development Program of China (No. 2013AA031002)
文摘Abstract: Microstructural evolution in a new kind of aluminum (A1) alloy with the chemical composition of AI-8.82Zn-2.08Mg- 0.80Cu-3.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470℃, 1 h), while the primary phase A13(Sc,Zr) remains stable. This is due to Sc and Zr additions into the A1 al- loy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumotion and favorable mechanical properties is obtained.
基金Sponsored by Characteristic Innovation Project of Guangdong Department of Education(2016WTSCX119)The 2017 Discipline Co-construction Project of“13th Five-Year Plan”of Philosophy and Social Sciences in Guangdong Province(GD17XGL62)。
文摘Traditional villages in the Pearl River Delta are known as "Lingnan water village".Urbanization affects the style of traditional villages in three ways.It also presents a positive side under the background of new urbanization.The living space of Xiaozhou Village has the unique characteristics of Lingnan water village.At the same time,it is obviously affected by urbanization.Industrialization and commercialization continue to promote the villagers to dismantle the old and build new ones until it becomes a village in the city.The evolution of the traditional living space is reflected in three aspects:being nibbled away or even disappeared,destroying the traditional style,function disappearance or transformation.In the later stage of urbanization,some living spaces have been repaired and updated.
文摘This study compares results on reconstructing the ancestral state of characters and ancestral areas of distribution in Cornaceae to gain insights into the impact of using different analytical methods. Ancestral charac-ter state reconstructions were compared among three methods (parsimony, maximum likelihood, and stochastic character mapping) using MESQUITE and a full Bayesian method in BAYESTRAITS and inferences of ancestral area distribution were compared between the parsimony-based dispersal-vicariance analysis (DIVA) and a newly developed maximum likelihood (ML) method. Results indicated that among the six inflorescence and fruit char-acters examined, "perfect" binary characters (no homoplasy, no polymorphism within terminals, and no missing data) are little affected by choice of method, while homoplasious characters and missing data are sensitive to methods used. Ancestral areas at deep nodes of the phylogeny are substantially different between DIVA and ML and strikingly different between analyses including and excluding fossils at three deepest nodes. These results, while raising caution in making conclusions on trait evolution and historical biogeography using conventional methods, demonstrate a limitation in our current understanding of character evolution and biogeography. The biogeographic history favored by the ML analyses including fossils suggested the origin and early radiation of Cornus likely occurred in the late Cretaceous and earliest Tertiary in Europe and intercontinental disjunctions in three lineages involved movements across the North Atlantic Land Bridge (BLB) in the early and mid Tertiary. This result is congruent with the role of NALB for post-Eocene migration and in connecting tropical floras in North America and Africa, and in eastern Asia and South America. However, alternative hypotheses with an origin in eastern Asia and early Trans-Beringia migrations of the genus cannot be ruled out.