Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing sc...Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.展开更多
Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 35...Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 350℃ for 1 h and 700℃ for 3 h in nitrogen atmosphere, respectively. The initial diameters of the specimens were varied from 5 to 1 mm with a height-to-diameter ratio h0/D0 = 1.5. Cylinder compression was carried out in the lubrication condition with talc powder, without lubricant, with petroleum jelly, and with vegetable oil. The experiment was carried out at room temperature on a universal testing machine INSTRON 5569 with a strain rate of ε = 0.0025 A. The results show that with the same lubricant, the yield strength decreases with a decrease in specimen size for the specimens annealed at 350℃ for 1 b; however, it increases with a decrease in specimen size for the specimens annealed at 700℃ for 3 h. The yield strength decreases with an increase in grain size. The influences of lubricants on yield strength become larger with miniaturization of the specimens.展开更多
Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for de...Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for determining the basic mechanical properties of rocks and revealing the mechanism of isolated pillar disasters under unidimensional stress.The shape effects of rock mechanical properties under uniaxial compression are mainly quantitatively reflected in the specific shape ratios of rocks.Therefore,it is necessary to study the detailed shape ratio effects on the mechanical properties of rectangular prism rock specimens and isolated pillars under uniaxial compressive stress.In this study,granite,marble and sandstone rectangular prism specimens with various height to width ratios(r)and width to thickness ratios(u)were prepared and tested.The study results show that r and u have a great influence on the bearing ability of rocks,and thin or high rocks have lower uniaxial compressive strength.Reducing the level of r can enhance the u effect on the strength of rocks,and increasing the level of u can enhance the r effect on the strength of rocks.The lateral strain on the thickness side of the rock specimen is larger than that on the width side,which implies that crack growth occurs easily on the thickness side.Considering r and u,a novel strength prediction model of isolated pillars was proposed based on the testing results,and the prediction model was used for the safety assessment of 179 isolated pillars in the Xianglu Mountain Tungsten Mine.展开更多
This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit...This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.展开更多
Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal...Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.展开更多
Objective:The study aimed to assess the effectiveness of lukewarm water compress on breast pain and breast engorgement among post-cesarean primiparous mothers.Materials and Methods:This quasi-experimental posttest-onl...Objective:The study aimed to assess the effectiveness of lukewarm water compress on breast pain and breast engorgement among post-cesarean primiparous mothers.Materials and Methods:This quasi-experimental posttest-only design was conducted with 60 post-cesarean section primiparous mothers between October 2018 and January 2019.A simple random sampling technique was used to allocate 30 participants to both experimental and control groups.The experimental group received lukewarm water compress using a sponge cloth for 20 min twice a day on the second,third,and fourth postnatal days.The control group received routine hospital care.Breast pain and engorgement were assessed using the Visual Analog Pain Scale and Breast Engorgement Assessment Scale on the third,fourth,and fifth postnatal days.Results:Significant differences were observed between the experimental and control groups on day 1 and day 3 in terms of breast pain and engorgement scores among post-cesarean section mothers(P<0.001).In addition,no statistically significant differences were found between sociodemographic and breastfeeding parameters and breast pain and engorgement(P>0.05).Conclusion:Lukewarm water compress is effective in reducing breast pain and engorgement in post-cesarean primiparous mothers.Future research can include randomized controlled trials to evaluate the effectiveness of different therapies in treating breast pain and engorgement.展开更多
Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), wh...Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), where μ, T and H denote the chemical potential, temperature and the applied field, respectively, we provide in this paper fits to the empirical H<sub>c</sub><sub>2</sub>(T) data of H<sub>3</sub>S reported by Mozaffari, et al. (2019) and deal with the issue of whether or not H<sub>3</sub>S exhibits the Meissner effect. Employing a variant of the template given by Dogan and Cohen (2021), we examine in detail the results of Hirsch and Marsiglio (2022) who have claimed that H<sub>3</sub>S does not exhibit the Meissner effect and Minkov, et al. (2023) who have claimed that it does. We are thus led to suggest that monitoring the chemical potential (equivalently, the number density of Cooper pairs N<sub>s</sub> at T = T<sub>c</sub>) should shed new light on the issue being addressed.展开更多
Microforming is an effective method to manufacture small metal parts.However,macro forming can not be transferred to microforming directly because of size effects.Flow stress and tribology size effects were studied.Sc...Microforming is an effective method to manufacture small metal parts.However,macro forming can not be transferred to microforming directly because of size effects.Flow stress and tribology size effects were studied.Scaled down copper T2 cylinder compression was carried out with the lubrication of castor oil and without lubrication.The results show that the flow stress decreases with decreasing the initial specimen diameter in both lubrication conditions,and the flow stress decreases by 30 MPa with the initial specimen diameter decreasing from 8 mm to 1 mm.The friction factor increases obviously with decreasing the initial specimen diameter in the case of lubricating with castor oil,and the friction factor increases by 0.11 with the initial specimen diameter decreasing from 8 mm to 1 mm.However,the tribology size effect is not found in the case without lubrication.The reasons of the flow stress and tribology size effects were also discussed.展开更多
Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the a...Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.展开更多
The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme sit...The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional space-time such a Rindler distributional background space-time, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional space-times with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations have a singular behavior at a Rindler horizon . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t violate the Einstein equivalence principle.展开更多
Objective:To analyze the effect of locking compression plate on the success rate of operation and the time of postoperative recovery.Methods:120 patients with limb fractures from March 2018 to March 2020 were randomly...Objective:To analyze the effect of locking compression plate on the success rate of operation and the time of postoperative recovery.Methods:120 patients with limb fractures from March 2018 to March 2020 were randomly divided into control group(60 cases)and observation group(60 cases).The control group was treated with plate screw internal fixation,The observation group used locking compression plate internal fixation,Compare the effect of treatment,the success rate of operation and the time of postoperative recovery.results:compared the effective rate of the two groups,the observation group(93.33%)was significantly higher than the control group(75.00%).Compared with the two groups,the success rate of operation and the time of postoperative recovery,the observed composition power was higher than that of the control group,and the postoperative recovery time was lower than that of the control group,P<0.05.Conclusion:The use of locking compression plate for the treatment of limb fracture can significantly increase the probability of successful operation,shorten the recovery time after operation,the overall curative effect is ideal,and the clinical popularization value is high.展开更多
To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found...To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.展开更多
The magnetostrictive properties of <112> axial aligned Tb0.3Dy0.7(Fe1-xMx)1.95(M=Mn, Al, x=0~ 0.15) alloys prepared by directional solidification are reported. The influence of heat treatment on microstructure ...The magnetostrictive properties of <112> axial aligned Tb0.3Dy0.7(Fe1-xMx)1.95(M=Mn, Al, x=0~ 0.15) alloys prepared by directional solidification are reported. The influence of heat treatment on microstructure and the compressive stress effect of magnetostriction is discussed.展开更多
According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compres...According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compressive stress based on the statistical damage model under uniaxial tension. The damage evolution law in the direction subjected to pressure is confirmed by the tensile damage evolution process of lateral deformation due to the Poisson effect,and then the compressive stress-strain relationship is defined. The peak nominal stress state and the critical state occurring in the macro longitudinal distributed splitting cracks are distinguished. The whole loading process can be divided into the even damage phase and the local breakage phase. The concrete specimen is divided into the failure process zone and the resting unloading zone. The size effects during the local breakage phase under the uniaxial monotonic compressive process and the hysteretic phenomenon under the cyclic compressive loading process are analyzed. Finally,the comparison between theoretical results and experimental results preliminarily verifies the rationality and feasibility of understanding the failure mechanism of concrete through the statistical damage constitutional law.展开更多
Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In thi...Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In this study, pulse compression working together with a linearly frequency modulated ultrasound pulse was investigated in LFEIT. Experiments were done on agar phantoms having the same level of electrical conductivity as soft biological tissues. The results showed that:(i) LFEIT using pulse compression could detect the location of the electrical conductivity variations precisely; (ii) LFEIT using pulse compression could get the same performance of detecting electrical conductivity variations as the traditional LFEIT using high voltage narrow pulse but reduce the peak stimulating power to the transducer by 25.5 dB; (iii) axial resolution of 1 mm could be obtained using modulation frequency bandwidth 2 MHz.展开更多
In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experimen...In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experiments.They indicate that RPC without fiber behaves quite the same as normal or high strength concrete.The size effect on compressive strength is more prominent in RPC containing fiber.Bazant's size effect formula of compressive strength applies to RPC.A formula is given to predict the compressive strength of cubic RPC specimens 100 mm on a side where the fiber dosage ranges from 0-2%.展开更多
Effects of a minor Ca addition on microstructural stability and dynamic restoration behavior of AlMg5 during hot deformation were investigated.They were studied using scanning electron microscopy(SEM),differential sca...Effects of a minor Ca addition on microstructural stability and dynamic restoration behavior of AlMg5 during hot deformation were investigated.They were studied using scanning electron microscopy(SEM),differential scanning calorimetry(DSC),electron backscatter diffraction(EBSD) analyses and transmission electron microscopy(TEM).JMatPro package was used for simulation of the solidification path of the alloys.The results show that the addition of Ca does not affect the microstructure and hot compression behavior of the as-cast samples.However,it prevents the drastic grain growth during homogenization.It is found that coarse grains of Ca-free alloy promote the dynamic recovery and slow down the dynamic recrystallization during hot compression.Also,the particle stimulated nucleation is suggested as the main nucleation mechanism of new recrystallized grains for hot compressed Ca-free alloy On the other hand,the microstructure of the hot compressed Ca-added alloy is greatly affected by the presence of Al4Ca intermetallics.The formation of Al4Ca phase is predicted by JMatPro and revealed by DSC,SEM and TEM studies.Finally,it is found that the presence of Al4Ca precipitates on the grain boundaries of Ca-added alloy prevents the growth of a(Al) by Zener pinning effect and results in the stability of microstructure during homogenization.展开更多
A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio ...A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.展开更多
Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compre...Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compression behavior of cement-based materials under high strain rates.The static tests were applied using a universalservo-hydraulic system,and the dynamic tests were applied by a spilt Hopkinson pressure bar(SHPB)system.The experimentalresults show that for mortar and paste specimens,the dynamic compressive strength is greater than the quasi-static one,and the dynamic compressive strength for specimens of large size is lower than those of smallsize.However,the dynamic increase factors(DIF)has an opposite trend.Obviously,both strain rate and size effect exist in mortar and paste.The test results were then analyzed using Weibull,Carpinteriand Ba?ant's size effect laws.A good agreement between these three laws and the test results was reached on the compressive strength.However,for the experimentalresults of paste and cement mortar,the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.展开更多
It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the ...It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.展开更多
基金Project(51375113)supported by the National Natural Science Foundation of China
文摘Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.
基金supported by the National High-Tech Research and Development Program of China (No. 2006AA04Z316)Heilongjiang Natural Science Funds for Distinguished Young Scholars (No. JC-05-11)
文摘Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 350℃ for 1 h and 700℃ for 3 h in nitrogen atmosphere, respectively. The initial diameters of the specimens were varied from 5 to 1 mm with a height-to-diameter ratio h0/D0 = 1.5. Cylinder compression was carried out in the lubrication condition with talc powder, without lubricant, with petroleum jelly, and with vegetable oil. The experiment was carried out at room temperature on a universal testing machine INSTRON 5569 with a strain rate of ε = 0.0025 A. The results show that with the same lubricant, the yield strength decreases with a decrease in specimen size for the specimens annealed at 350℃ for 1 b; however, it increases with a decrease in specimen size for the specimens annealed at 700℃ for 3 h. The yield strength decreases with an increase in grain size. The influences of lubricants on yield strength become larger with miniaturization of the specimens.
基金funded by the National Natural Science Foundation of China(Nos.51774326,42177164,41807259,and41702350)Hunan Young Talent(No.2021RC3007)+2 种基金the open fund of Mining Disaster Prevention and Control Ministry Key Laboratory at Shandong University of Science and Technology(No.MDPC201917)the Fundamental Research Funds for the Central Universities of Central South University(No.2019zzts668)the Innovation-Driven Project of Central South University(No.2020CX040)。
文摘Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for determining the basic mechanical properties of rocks and revealing the mechanism of isolated pillar disasters under unidimensional stress.The shape effects of rock mechanical properties under uniaxial compression are mainly quantitatively reflected in the specific shape ratios of rocks.Therefore,it is necessary to study the detailed shape ratio effects on the mechanical properties of rectangular prism rock specimens and isolated pillars under uniaxial compressive stress.In this study,granite,marble and sandstone rectangular prism specimens with various height to width ratios(r)and width to thickness ratios(u)were prepared and tested.The study results show that r and u have a great influence on the bearing ability of rocks,and thin or high rocks have lower uniaxial compressive strength.Reducing the level of r can enhance the u effect on the strength of rocks,and increasing the level of u can enhance the r effect on the strength of rocks.The lateral strain on the thickness side of the rock specimen is larger than that on the width side,which implies that crack growth occurs easily on the thickness side.Considering r and u,a novel strength prediction model of isolated pillars was proposed based on the testing results,and the prediction model was used for the safety assessment of 179 isolated pillars in the Xianglu Mountain Tungsten Mine.
基金financially supported by the National Natural Science Foundation of China (No.42077244)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (No.Z020005)the Fundamental Research Funds for the Central Universities of Southeast University,China (No.2242021R10080)。
文摘This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.
基金Project(51608281)supported by the National Natural Science Foundation of ChinaProject(LGG21E080005)supported by the Provincial Natural Science Foundation of Zhejiang Province,China。
文摘Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.
文摘Objective:The study aimed to assess the effectiveness of lukewarm water compress on breast pain and breast engorgement among post-cesarean primiparous mothers.Materials and Methods:This quasi-experimental posttest-only design was conducted with 60 post-cesarean section primiparous mothers between October 2018 and January 2019.A simple random sampling technique was used to allocate 30 participants to both experimental and control groups.The experimental group received lukewarm water compress using a sponge cloth for 20 min twice a day on the second,third,and fourth postnatal days.The control group received routine hospital care.Breast pain and engorgement were assessed using the Visual Analog Pain Scale and Breast Engorgement Assessment Scale on the third,fourth,and fifth postnatal days.Results:Significant differences were observed between the experimental and control groups on day 1 and day 3 in terms of breast pain and engorgement scores among post-cesarean section mothers(P<0.001).In addition,no statistically significant differences were found between sociodemographic and breastfeeding parameters and breast pain and engorgement(P>0.05).Conclusion:Lukewarm water compress is effective in reducing breast pain and engorgement in post-cesarean primiparous mothers.Future research can include randomized controlled trials to evaluate the effectiveness of different therapies in treating breast pain and engorgement.
文摘Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), where μ, T and H denote the chemical potential, temperature and the applied field, respectively, we provide in this paper fits to the empirical H<sub>c</sub><sub>2</sub>(T) data of H<sub>3</sub>S reported by Mozaffari, et al. (2019) and deal with the issue of whether or not H<sub>3</sub>S exhibits the Meissner effect. Employing a variant of the template given by Dogan and Cohen (2021), we examine in detail the results of Hirsch and Marsiglio (2022) who have claimed that H<sub>3</sub>S does not exhibit the Meissner effect and Minkov, et al. (2023) who have claimed that it does. We are thus led to suggest that monitoring the chemical potential (equivalently, the number density of Cooper pairs N<sub>s</sub> at T = T<sub>c</sub>) should shed new light on the issue being addressed.
基金Project(2006AA04Z316)supported by the High-tech Research and Development Program of ChinaProject(JC-05-11)supported by the Science Foundation for Distinguished Young Scholars of Heilongjiang Province,ChinaProject(HIT.NSRIF.2008.36)supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China。
文摘Microforming is an effective method to manufacture small metal parts.However,macro forming can not be transferred to microforming directly because of size effects.Flow stress and tribology size effects were studied.Scaled down copper T2 cylinder compression was carried out with the lubrication of castor oil and without lubrication.The results show that the flow stress decreases with decreasing the initial specimen diameter in both lubrication conditions,and the flow stress decreases by 30 MPa with the initial specimen diameter decreasing from 8 mm to 1 mm.The friction factor increases obviously with decreasing the initial specimen diameter in the case of lubricating with castor oil,and the friction factor increases by 0.11 with the initial specimen diameter decreasing from 8 mm to 1 mm.However,the tribology size effect is not found in the case without lubrication.The reasons of the flow stress and tribology size effects were also discussed.
文摘Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.
文摘The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional space-time such a Rindler distributional background space-time, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional space-times with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations have a singular behavior at a Rindler horizon . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t violate the Einstein equivalence principle.
文摘Objective:To analyze the effect of locking compression plate on the success rate of operation and the time of postoperative recovery.Methods:120 patients with limb fractures from March 2018 to March 2020 were randomly divided into control group(60 cases)and observation group(60 cases).The control group was treated with plate screw internal fixation,The observation group used locking compression plate internal fixation,Compare the effect of treatment,the success rate of operation and the time of postoperative recovery.results:compared the effective rate of the two groups,the observation group(93.33%)was significantly higher than the control group(75.00%).Compared with the two groups,the success rate of operation and the time of postoperative recovery,the observed composition power was higher than that of the control group,and the postoperative recovery time was lower than that of the control group,P<0.05.Conclusion:The use of locking compression plate for the treatment of limb fracture can significantly increase the probability of successful operation,shorten the recovery time after operation,the overall curative effect is ideal,and the clinical popularization value is high.
基金Project(51105250)supported by the National Natural Science Foundation of ChinaProject(P2015-13)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.
文摘The magnetostrictive properties of <112> axial aligned Tb0.3Dy0.7(Fe1-xMx)1.95(M=Mn, Al, x=0~ 0.15) alloys prepared by directional solidification are reported. The influence of heat treatment on microstructure and the compressive stress effect of magnetostriction is discussed.
基金Sponsored by the Program for New Century Excellent Talents in University (NCET-05-0413)the National Natural Science Foundation of China(Grant No.90510018 and 50679006)the China Postdoctoral Science Foundation(Grant No.20090461166)
文摘According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compressive stress based on the statistical damage model under uniaxial tension. The damage evolution law in the direction subjected to pressure is confirmed by the tensile damage evolution process of lateral deformation due to the Poisson effect,and then the compressive stress-strain relationship is defined. The peak nominal stress state and the critical state occurring in the macro longitudinal distributed splitting cracks are distinguished. The whole loading process can be divided into the even damage phase and the local breakage phase. The concrete specimen is divided into the failure process zone and the resting unloading zone. The size effects during the local breakage phase under the uniaxial monotonic compressive process and the hysteretic phenomenon under the cyclic compressive loading process are analyzed. Finally,the comparison between theoretical results and experimental results preliminarily verifies the rationality and feasibility of understanding the failure mechanism of concrete through the statistical damage constitutional law.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51137004 and 61427806)the Scientific Instrument and Equipment Development Project of Chinese Academy of Sciences(Grant No.YZ201507)the China Scholarship Council(Grant No.201604910849)
文摘Lorentz force electrical impedance tomography (LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In this study, pulse compression working together with a linearly frequency modulated ultrasound pulse was investigated in LFEIT. Experiments were done on agar phantoms having the same level of electrical conductivity as soft biological tissues. The results showed that:(i) LFEIT using pulse compression could detect the location of the electrical conductivity variations precisely; (ii) LFEIT using pulse compression could get the same performance of detecting electrical conductivity variations as the traditional LFEIT using high voltage narrow pulse but reduce the peak stimulating power to the transducer by 25.5 dB; (iii) axial resolution of 1 mm could be obtained using modulation frequency bandwidth 2 MHz.
基金Project 50508005 supported by the National Natural Science Foundations of China
文摘In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experiments.They indicate that RPC without fiber behaves quite the same as normal or high strength concrete.The size effect on compressive strength is more prominent in RPC containing fiber.Bazant's size effect formula of compressive strength applies to RPC.A formula is given to predict the compressive strength of cubic RPC specimens 100 mm on a side where the fiber dosage ranges from 0-2%.
基金supported by the research project on aluminum alloys (Grant No. PJE18070 of Korea Institute of Industrial Technology), which is funded by Ministry of Trade, Industry and Energy, Korea
文摘Effects of a minor Ca addition on microstructural stability and dynamic restoration behavior of AlMg5 during hot deformation were investigated.They were studied using scanning electron microscopy(SEM),differential scanning calorimetry(DSC),electron backscatter diffraction(EBSD) analyses and transmission electron microscopy(TEM).JMatPro package was used for simulation of the solidification path of the alloys.The results show that the addition of Ca does not affect the microstructure and hot compression behavior of the as-cast samples.However,it prevents the drastic grain growth during homogenization.It is found that coarse grains of Ca-free alloy promote the dynamic recovery and slow down the dynamic recrystallization during hot compression.Also,the particle stimulated nucleation is suggested as the main nucleation mechanism of new recrystallized grains for hot compressed Ca-free alloy On the other hand,the microstructure of the hot compressed Ca-added alloy is greatly affected by the presence of Al4Ca intermetallics.The formation of Al4Ca phase is predicted by JMatPro and revealed by DSC,SEM and TEM studies.Finally,it is found that the presence of Al4Ca precipitates on the grain boundaries of Ca-added alloy prevents the growth of a(Al) by Zener pinning effect and results in the stability of microstructure during homogenization.
基金Project(51408213)supported by the National Natural Science Foundation of China
文摘A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.
基金Funded by the National Natural Science Foundation of China(No.51509078)the Natural Science Foundation of Jiangsu Province(No.BK20150820)
文摘Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compression behavior of cement-based materials under high strain rates.The static tests were applied using a universalservo-hydraulic system,and the dynamic tests were applied by a spilt Hopkinson pressure bar(SHPB)system.The experimentalresults show that for mortar and paste specimens,the dynamic compressive strength is greater than the quasi-static one,and the dynamic compressive strength for specimens of large size is lower than those of smallsize.However,the dynamic increase factors(DIF)has an opposite trend.Obviously,both strain rate and size effect exist in mortar and paste.The test results were then analyzed using Weibull,Carpinteriand Ba?ant's size effect laws.A good agreement between these three laws and the test results was reached on the compressive strength.However,for the experimentalresults of paste and cement mortar,the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.
基金the support of Thousand Talents Programthe National Natural Science Foundation of China(51479114)special fund for Marine Renewable Energy Project(GHME2014ZC01)
文摘It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.