Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It i...Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It is difficult to obtain the remaining nonlinear information in the residual subspaces,which may deteriorate the prediction performance in complex industrial processes.To fully utilize data information in PLS residual subspaces,a deep residual PLS(DRPLS)framework is proposed for quality prediction in this paper.Inspired by deep learning,DRPLS is designed by stacking a number of PLSs successively,in which the input residuals of the previous PLS are used as the layer connection.To enhance representation,nonlinear function is applied to the input residuals before using them for stacking highlevel PLS.For each PLS,the output parts are just the output residuals from its previous PLS.Finally,the output prediction is obtained by adding the results of each PLS.The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process.展开更多
The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s...Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.展开更多
The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown ...The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6.展开更多
In the present paper the concept and properties of the residual functional in Sobolev space are investigated.The weak compactness,force condition,lower semi-continuity and convex of the residual functional are proved....In the present paper the concept and properties of the residual functional in Sobolev space are investigated.The weak compactness,force condition,lower semi-continuity and convex of the residual functional are proved.In Sobolev space,the minimum principle of the residual functional is proposed.The minimum existence theoreomfor J(u)=0 is given by the modern critical point theory.And the equivalence theorem or five equivalence forms for the residual functional equation are also proved.展开更多
Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale),...Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale), jerusalem artichoke (Silphiurn perfoliatum L.) and evening primrose (A colypha australis L.) rhizospheric soils were thus examined using the method of carbon source utilization. The results indicated that there were various toxic effects of crude oil residues on the growth and reproduction of soil bacteria, but the weed rhizospheres could mitigate the toxic effects. Total heterotrophic counting colony-forming units (CFUs) in the rhizospheric soils were significantly higher than those in the non-rhizospheric soils. The culturable soil-bacterial CFUs in the jerusalem artichoke (S. perfoliatum) rhizosphere polluted with 0.50 kg/pot of crude oil residues were almost twice as much as those with 0.25 kg/pot and without the addition of crude oil residues. The addition of crude oil residues increased the difference in substrate evenness, substrate richness, and substrate diversity between non-rhizospheric and rhizospheric soils of T. officinale and A. australis, but there was no significant (p〉0.05) difference in the Shannon's diversity index between non-rhizospheric and rhizospheric soils of S. perfoliatum. The rhizospheric response of weed species to crude oil residues suggested that S. perfoliatum may be a potential weed species for the effective plant-microorganism bioremediation of contaminated soils by crude oil residues.展开更多
Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A ...Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source(MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function(STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively.The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts.展开更多
<strong>Objective:</strong> To evaluate the correlation between residual renal function and hypertension in regular haemodialysis patients. <strong>Background:</strong> Initiating chronic dialy...<strong>Objective:</strong> To evaluate the correlation between residual renal function and hypertension in regular haemodialysis patients. <strong>Background:</strong> Initiating chronic dialysis treatment gives end-stage renal disease patients a new lease on life. However, the annual mortality rate in dialysis patients is ~20% and quality of life is substantially reduced. <strong>Patients and Methods:</strong> This study was carried out on a reasonable number of subjects on regular haemodialysis divided into two groups. All were given informed consent and, the study was approved by the ethics committee of Menoufia University. <strong>Results:</strong> There was significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant. 40% of group 1 were hypertensive, 66.7% of group 2 patients were hypertensive, the interdialytic weight gain mean was 1.42 in group 1 and 2.37 in group 2. Control of hypertension was achieved in 63.6% of group 1 patients by one drug, 27.3% patients by 2 drugs;however 9.1% of patients need 3 drugs to control their blood pressure, while in group 2 40% of patients were controlled by one drug, 45% with 2 drugs and 15% need 3 drugs to control blood pressure. <strong>Conclusion:</strong> There is significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant.展开更多
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met...Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
Paris law can reflect the failure mechanism of materials and is usually used to be a method to predict fatigue life or residual fatigue life.But the variable which can represent the health of machine is hardly measure...Paris law can reflect the failure mechanism of materials and is usually used to be a method to predict fatigue life or residual fatigue life.But the variable which can represent the health of machine is hardly measured on line.To a degree,the difficulty of on-line application restricts the scope of application of Paris law.The relationship between characteristic values of vibration signals and the variable in the Paris equation which can describe the health of machine is investigated by taking ball bearings as investigative objects.Based on 6205 deep groove ball bearings as a living example,historical lives and vibration signals are analyzed.The feasibility of describing that variable in the Paris equation by the characteristic value of vibration signals is inspected.After that vibration signals decomposed by empirical mode decomposition(EMD),root mean square(RMS) of intrinsic mode function(IMF) involving fault characteristic frequency has a consistent trend with the diameter of flaws.Based on the trend,two improved Paris models are proposed and the scope of application of them is inspected.These two Paris Models are validated by fatigue residual life data from tests of rolling element bearings and vibration signals monitored in the process of operation of rolling element bearings.It shows that the first improved Paris Model is simple and plain and it can be easily applied in actual conditions.The trend of the fatigue residual life predicted by the second improved Paris model is close to the actual conditions and the result of the prediction is slightly greater than the truth.In conclusion,after the appearance of detectable faults,these improved models based on RMS can predict residual fatigue life on line and a new approach to predict residual fatigue life of ball bearings on line without disturbing the machine running is provided.展开更多
The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for n...The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for nonlinear bending problem of shallow shells. The results from the present method are in good agreement with those derived from other methods. The present method is of higher accuracy, lower computing time and wider adaptability. In addition, the design of computer program is simple and it is easy to be programmed.展开更多
This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC) plate with a periodic array of edge cracks. The FGC i...This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC) plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF). The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.展开更多
The Residual Volume (RV) and Functional ResidualCapacity (FRC) were measured in 49 male workers exposedto cement dust (group A) and 50 male patients with pneu-moconiosis (group B). These data were compared withthose i...The Residual Volume (RV) and Functional ResidualCapacity (FRC) were measured in 49 male workers exposedto cement dust (group A) and 50 male patients with pneu-moconiosis (group B). These data were compared withthose in 84 healthy workers (group C). Data from groupA, B exhibited mixed or obstructed ventilation dysfunction.The means of RV%, FRC% in group A were 31.2~35.6%and 56.7~59.3% respectively. These values were not onlysignificantly higher than those of the group C, but alsohigher than those of group B. The individual abnormaldetecting rates of RV% in group A, B were 26.5% and52.0% respectively, remarkably higher than 9.5% in thegroup C. It seems that RV% can be used as an individualscreening test in clinical practice. In physiologic terms,It has been recognized that FRC might more objectively.reflect the changes in quasi-static mechanics in community.The impact factors of RV might be related to quasi-staticmechanics other than to those of strength of respiratorymuscles, resistance of airway and collapsibility of bron-chial walls.展开更多
In protein molecules each residue has a different ability to form contacts.In this paper,we calculated the number of contacts per residue and investigated the distribution of residue-residue contacts from 495 globular...In protein molecules each residue has a different ability to form contacts.In this paper,we calculated the number of contacts per residue and investigated the distribution of residue-residue contacts from 495 globular protein molecules using Contacts of Structural Units(CSU)software.It was found that the probability P(n)of amino acid residues having n pairs of contacts in all contacts fits Gaussian distribution very well.The distribution function of residue-residue contacts can be expressed as:P(n)=P_0+aexp[-b(n-n_c)~2].In our calculation,P_0=-0.06,α=11.4,b=-0.04 and n_c=9.0.According to distribution function,we found that those hydrophobic(H)residues including Leu,Val,Ile,Met,Phe,Tyr,Cys,and Trp residues have large values of the most probable number of contact n_c,and hydrophilic(P)residues including Ala,Gly,Thr, His,Glu,Gln,Asp,Asn,Lys,Ser,Arg,and Pro residues have the small ones.We also compare with Fauchere-Pliska hydrophobicity scale(FPH)and the most probable number of contact n_c for 20 amino acid residues,and find that there exists a linear relationship between Fauchere-Pliska hydrophobicity scale(FPH)and the most probable number of contact n_c, and it is expressed as:n_c=a+b×FPH,here α=8.87,and b=1.15.It is important to further explain protein folding and its stability from residue-residue contacts.展开更多
Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensi...Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensional survival distribution functions of the processes {δ and γ, and their Lebesgue decompositions are derived.展开更多
Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate ...Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate timely clinical interventions,preventing adverse outcomes.Ophthalmologists screen these pathologies with fundus Fluorescein Angiography Images(FFA)which capture retinal components featuring diverse morphologies such as retinal vasculature,macula,optical disk etc.However,these images have low resolutions,hindering the accurate detection of ocular disorders.Construction of high resolution images from these images,by super resolution approaches expedites the diagnosis of pathologies with better accuracy.This paper presents a deep learning network for Single Image Super Resolution(SISR)of fundus fluorescein angiography images,modeled on residual learning,gridded interpolation and Swish activation functions.The image prior for this network is constructed by gridded interpolation which provides better image fidelity compared to other priors.Evaluation of the performance of this network and comparative analysis with benchmark architectures,on a standard dataset shows that the proposed network is superior with respect to performance metrics and computational time.展开更多
There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section...There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section 2, we prove that any BCDSTRE must be a Markov chain in time random environment when we consider the distribution of the particles in space as a random element. In Section 3, we calculate the first-order moments and the second-order moments of BCDSTRE.展开更多
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金supported in part by the National Natural Science Foundation of China(62173346,61988101,92267205,62103360,62303494)。
文摘Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It is difficult to obtain the remaining nonlinear information in the residual subspaces,which may deteriorate the prediction performance in complex industrial processes.To fully utilize data information in PLS residual subspaces,a deep residual PLS(DRPLS)framework is proposed for quality prediction in this paper.Inspired by deep learning,DRPLS is designed by stacking a number of PLSs successively,in which the input residuals of the previous PLS are used as the layer connection.To enhance representation,nonlinear function is applied to the input residuals before using them for stacking highlevel PLS.For each PLS,the output parts are just the output residuals from its previous PLS.Finally,the output prediction is obtained by adding the results of each PLS.The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
文摘Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.
基金Research Program in the Ninth National Five-Year-Plan of Ministryof Land and Resources, China
文摘The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6.
文摘In the present paper the concept and properties of the residual functional in Sobolev space are investigated.The weak compactness,force condition,lower semi-continuity and convex of the residual functional are proved.In Sobolev space,the minimum principle of the residual functional is proposed.The minimum existence theoreomfor J(u)=0 is given by the modern critical point theory.And the equivalence theorem or five equivalence forms for the residual functional equation are also proved.
基金The National Natural Science Foundation of China as an Outstanding Youth Fund grant (No. 20225722) the National NaturalScience Foundation for the Joint China-Russia Project (No. 20611120015)
文摘Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale), jerusalem artichoke (Silphiurn perfoliatum L.) and evening primrose (A colypha australis L.) rhizospheric soils were thus examined using the method of carbon source utilization. The results indicated that there were various toxic effects of crude oil residues on the growth and reproduction of soil bacteria, but the weed rhizospheres could mitigate the toxic effects. Total heterotrophic counting colony-forming units (CFUs) in the rhizospheric soils were significantly higher than those in the non-rhizospheric soils. The culturable soil-bacterial CFUs in the jerusalem artichoke (S. perfoliatum) rhizosphere polluted with 0.50 kg/pot of crude oil residues were almost twice as much as those with 0.25 kg/pot and without the addition of crude oil residues. The addition of crude oil residues increased the difference in substrate evenness, substrate richness, and substrate diversity between non-rhizospheric and rhizospheric soils of T. officinale and A. australis, but there was no significant (p〉0.05) difference in the Shannon's diversity index between non-rhizospheric and rhizospheric soils of S. perfoliatum. The rhizospheric response of weed species to crude oil residues suggested that S. perfoliatum may be a potential weed species for the effective plant-microorganism bioremediation of contaminated soils by crude oil residues.
基金supported by the National Key Technologies R&D Program (Grant No. 2018YFB1106000)Innovation Funds of China Academy of Launch Vehicle Technology (CALT) for Universities (Grant No.CALT201709)Tsinghua Grants for Autonomous Research。
文摘Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source(MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function(STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively.The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts.
文摘<strong>Objective:</strong> To evaluate the correlation between residual renal function and hypertension in regular haemodialysis patients. <strong>Background:</strong> Initiating chronic dialysis treatment gives end-stage renal disease patients a new lease on life. However, the annual mortality rate in dialysis patients is ~20% and quality of life is substantially reduced. <strong>Patients and Methods:</strong> This study was carried out on a reasonable number of subjects on regular haemodialysis divided into two groups. All were given informed consent and, the study was approved by the ethics committee of Menoufia University. <strong>Results:</strong> There was significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant. 40% of group 1 were hypertensive, 66.7% of group 2 patients were hypertensive, the interdialytic weight gain mean was 1.42 in group 1 and 2.37 in group 2. Control of hypertension was achieved in 63.6% of group 1 patients by one drug, 27.3% patients by 2 drugs;however 9.1% of patients need 3 drugs to control their blood pressure, while in group 2 40% of patients were controlled by one drug, 45% with 2 drugs and 15% need 3 drugs to control blood pressure. <strong>Conclusion:</strong> There is significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant.
文摘Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金supported by National Natural Science Foundation of China (Grant No. 50705096)National Science and Technology Major Project of China(Grant No. 2009zx04014-014)
文摘Paris law can reflect the failure mechanism of materials and is usually used to be a method to predict fatigue life or residual fatigue life.But the variable which can represent the health of machine is hardly measured on line.To a degree,the difficulty of on-line application restricts the scope of application of Paris law.The relationship between characteristic values of vibration signals and the variable in the Paris equation which can describe the health of machine is investigated by taking ball bearings as investigative objects.Based on 6205 deep groove ball bearings as a living example,historical lives and vibration signals are analyzed.The feasibility of describing that variable in the Paris equation by the characteristic value of vibration signals is inspected.After that vibration signals decomposed by empirical mode decomposition(EMD),root mean square(RMS) of intrinsic mode function(IMF) involving fault characteristic frequency has a consistent trend with the diameter of flaws.Based on the trend,two improved Paris models are proposed and the scope of application of them is inspected.These two Paris Models are validated by fatigue residual life data from tests of rolling element bearings and vibration signals monitored in the process of operation of rolling element bearings.It shows that the first improved Paris Model is simple and plain and it can be easily applied in actual conditions.The trend of the fatigue residual life predicted by the second improved Paris model is close to the actual conditions and the result of the prediction is slightly greater than the truth.In conclusion,after the appearance of detectable faults,these improved models based on RMS can predict residual fatigue life on line and a new approach to predict residual fatigue life of ball bearings on line without disturbing the machine running is provided.
文摘The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for nonlinear bending problem of shallow shells. The results from the present method are in good agreement with those derived from other methods. The present method is of higher accuracy, lower computing time and wider adaptability. In addition, the design of computer program is simple and it is easy to be programmed.
文摘This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC) plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF). The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.
文摘The Residual Volume (RV) and Functional ResidualCapacity (FRC) were measured in 49 male workers exposedto cement dust (group A) and 50 male patients with pneu-moconiosis (group B). These data were compared withthose in 84 healthy workers (group C). Data from groupA, B exhibited mixed or obstructed ventilation dysfunction.The means of RV%, FRC% in group A were 31.2~35.6%and 56.7~59.3% respectively. These values were not onlysignificantly higher than those of the group C, but alsohigher than those of group B. The individual abnormaldetecting rates of RV% in group A, B were 26.5% and52.0% respectively, remarkably higher than 9.5% in thegroup C. It seems that RV% can be used as an individualscreening test in clinical practice. In physiologic terms,It has been recognized that FRC might more objectively.reflect the changes in quasi-static mechanics in community.The impact factors of RV might be related to quasi-staticmechanics other than to those of strength of respiratorymuscles, resistance of airway and collapsibility of bron-chial walls.
基金This work was supported by the NSFC(Nos.20174036,and 20274040)the Natural Science Foundation of Zhejiang Province(10102)the Science Technology Development Plan of Wenzhou City(No.S2002A014)
文摘In protein molecules each residue has a different ability to form contacts.In this paper,we calculated the number of contacts per residue and investigated the distribution of residue-residue contacts from 495 globular protein molecules using Contacts of Structural Units(CSU)software.It was found that the probability P(n)of amino acid residues having n pairs of contacts in all contacts fits Gaussian distribution very well.The distribution function of residue-residue contacts can be expressed as:P(n)=P_0+aexp[-b(n-n_c)~2].In our calculation,P_0=-0.06,α=11.4,b=-0.04 and n_c=9.0.According to distribution function,we found that those hydrophobic(H)residues including Leu,Val,Ile,Met,Phe,Tyr,Cys,and Trp residues have large values of the most probable number of contact n_c,and hydrophilic(P)residues including Ala,Gly,Thr, His,Glu,Gln,Asp,Asn,Lys,Ser,Arg,and Pro residues have the small ones.We also compare with Fauchere-Pliska hydrophobicity scale(FPH)and the most probable number of contact n_c for 20 amino acid residues,and find that there exists a linear relationship between Fauchere-Pliska hydrophobicity scale(FPH)and the most probable number of contact n_c, and it is expressed as:n_c=a+b×FPH,here α=8.87,and b=1.15.It is important to further explain protein folding and its stability from residue-residue contacts.
基金Supported partly by Aeronautical Science Foundation of China
文摘Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensional survival distribution functions of the processes {δ and γ, and their Lebesgue decompositions are derived.
文摘Diabetic retinopathy,aged macular degeneration,glaucoma etc.are widely prevalent ocular pathologies which are irreversible at advanced stages.Machine learning based automated detection of these pathologies facilitate timely clinical interventions,preventing adverse outcomes.Ophthalmologists screen these pathologies with fundus Fluorescein Angiography Images(FFA)which capture retinal components featuring diverse morphologies such as retinal vasculature,macula,optical disk etc.However,these images have low resolutions,hindering the accurate detection of ocular disorders.Construction of high resolution images from these images,by super resolution approaches expedites the diagnosis of pathologies with better accuracy.This paper presents a deep learning network for Single Image Super Resolution(SISR)of fundus fluorescein angiography images,modeled on residual learning,gridded interpolation and Swish activation functions.The image prior for this network is constructed by gridded interpolation which provides better image fidelity compared to other priors.Evaluation of the performance of this network and comparative analysis with benchmark architectures,on a standard dataset shows that the proposed network is superior with respect to performance metrics and computational time.
基金Supported by the NSFC(10371092,11771185,10871200)
文摘There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section 2, we prove that any BCDSTRE must be a Markov chain in time random environment when we consider the distribution of the particles in space as a random element. In Section 3, we calculate the first-order moments and the second-order moments of BCDSTRE.