期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Soliton solutions for nonlinear variable-order fractional Korteweg-de Vries(KdV)equation arising in shallow water waves
1
作者 Umair Ali Hijaz Ahmad Hanaa Abu-Zinadah 《Journal of Ocean Engineering and Science》 SCIE 2024年第1期50-58,共9页
Nonlinear fractional differential equations provide suitable models to describe real-world phenomena and many fractional derivatives are varying with time and space.The present study considers the advanced and broad s... Nonlinear fractional differential equations provide suitable models to describe real-world phenomena and many fractional derivatives are varying with time and space.The present study considers the advanced and broad spectrum of the nonlinear(NL)variable-order fractional differential equation(VO-FDE)in sense of VO Caputo fractional derivative(CFD)to describe the physical models.The VO-FDE transforms into an ordinary differential equation(ODE)and then solving by the modified(G/G)-expansion method.For ac-curacy,the space-time VO fractional Korteweg-de Vries(KdV)equation is solved by the proposed method and obtained some new types of periodic wave,singular,and Kink exact solutions.The newly obtained solutions confirmed that the proposed method is well-ordered and capable implement to find a class of NL-VO equations.The VO non-integer performance of the solutions is studied broadly by using 2D and 3D graphical representation.The results revealed that the NL VO-FDEs are highly active,functional and convenient in explaining the problems in scientific physics. 展开更多
关键词 space-time VO fractional kdv equation modified(G′/G)-expansion method VO Caputo fractional derivative generalized Riccati equation
原文传递
一类空时分数阶混合(1+1)维KdV方程的精确解 被引量:4
2
作者 李林芳 舒级 文慧霞 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期912-916,共5页
本文考虑一类具有修正Riemann-Liouville分数阶导数的空时分数阶混合(1+1)维KdV方程.利用分数阶复变换,本文将非线性分数阶偏微分方程转化为非线性常微分方程,然后应用首次积分法和Maple软件得到了该方程的精确解.
关键词 修正RiemannGLiouville分数阶导数 首次积分法 分数阶复变换 空时分数阶混合kdv方程
下载PDF
改进的指数函数方法求时空分数阶混合(1+1)维KdV方程的新精确解
3
作者 陈兆蕙 阳平华 《南昌大学学报(理科版)》 CAS 北大核心 2022年第6期596-601,共6页
借助修正的Riemann-Liouvielle分数阶导数,采用了改进的指数函数展开法,得到了时空分数阶混合(1+1)维KdV方程的新精确解。先将时空分数阶混合(1+1)维KdV方程转化为整数阶方程;其次引入新的辅助常微分方程,得到方程在不同约束条件下的新... 借助修正的Riemann-Liouvielle分数阶导数,采用了改进的指数函数展开法,得到了时空分数阶混合(1+1)维KdV方程的新精确解。先将时空分数阶混合(1+1)维KdV方程转化为整数阶方程;其次引入新的辅助常微分方程,得到方程在不同约束条件下的新精确解,最后对具有代表性的第一种情形下的新解进行了计算机仿真。 展开更多
关键词 时空分数阶混合(1+1)维kdv方程 改进后的指数函数展开法 修正的Riemann-Liouville分数阶导数 精确解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部