期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于网络和图的时空智能——概念、方法和应用
被引量:
3
1
作者
程涛
张洋
James Haworth
《测绘学报》
EI
CSCD
北大核心
2022年第7期1629-1639,共11页
当前时空智能(SpaceTimeAI)和地理空间智能(GeoAI)已是热门的话题,该研究领域旨在将计算机科学的最新方法(如深度学习)应用于地理空间问题。虽然深度学习方法因其对栅格数据的自然适用性而在图像处理中取得了巨大成功,但仍未广泛应用于...
当前时空智能(SpaceTimeAI)和地理空间智能(GeoAI)已是热门的话题,该研究领域旨在将计算机科学的最新方法(如深度学习)应用于地理空间问题。虽然深度学习方法因其对栅格数据的自然适用性而在图像处理中取得了巨大成功,但仍未广泛应用于其他空间和时空数据类型。本文提出使用网络和图作为SpaceTimeAI或GeoAI的基本结构的倡议,并将其应用于城市研究中。相比于基于网格的表达,基于网络的结构更加精确和实用。图能实现对点、线、面/多边形/网格和网络等多种空间结构的表达。本文通过时空预测、聚类和时空优化等常用时空分析方法展示基于网络和图的时空智能分析的优势,并介绍其在交通出行、警务和公共卫生等领域的应用。
展开更多
关键词
时空智能
地理空间智能
网络
图
深度学习
时空预测
下载PDF
职称材料
题名
基于网络和图的时空智能——概念、方法和应用
被引量:
3
1
作者
程涛
张洋
James Haworth
机构
伦敦大学学院土木环境及测绘工程系时空实验室
出处
《测绘学报》
EI
CSCD
北大核心
2022年第7期1629-1639,共11页
基金
英国研究与创新委员会(UKRI)资助项目(EP/R511683/1,EP/J004197/1,ES/L011840/1)
UCL Dean Prize
中国留学基金(201603170309)。
文摘
当前时空智能(SpaceTimeAI)和地理空间智能(GeoAI)已是热门的话题,该研究领域旨在将计算机科学的最新方法(如深度学习)应用于地理空间问题。虽然深度学习方法因其对栅格数据的自然适用性而在图像处理中取得了巨大成功,但仍未广泛应用于其他空间和时空数据类型。本文提出使用网络和图作为SpaceTimeAI或GeoAI的基本结构的倡议,并将其应用于城市研究中。相比于基于网格的表达,基于网络的结构更加精确和实用。图能实现对点、线、面/多边形/网格和网络等多种空间结构的表达。本文通过时空预测、聚类和时空优化等常用时空分析方法展示基于网络和图的时空智能分析的优势,并介绍其在交通出行、警务和公共卫生等领域的应用。
关键词
时空智能
地理空间智能
网络
图
深度学习
时空预测
Keywords
spacetimeai
GeoAI
network
graph
deep learning
space-time prediction
分类号
P208 [天文地球—地图制图学与地理信息工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于网络和图的时空智能——概念、方法和应用
程涛
张洋
James Haworth
《测绘学报》
EI
CSCD
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部