期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An improved nonlinear control strategy for deep space formation flying spacecraft 被引量:2
1
作者 Peng Li Pingyuan Cui Hutao Cui Deep Space Exploration Research Center,Harbin Institute of Technology, 150080 Harbin, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期847-856,共10页
This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the ... This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the circular restricted three-body problem (CRTBP) and elliptic restricted three-body problem (ERTBP) are presented. Then, with the Floquet mode method, an impulsive controller is developed to keep the Chief on the desired Halo orbit. Finally, a nonlinear adaptive control scheme based on Nonzero set- point LQR and neural network is proposed to achieve high precision formation maneuver and keeping. The simulation results indicate that the proposed nonlinear control strategy is reasonable as it considers not only the orbit keeping of the Chief, but also the formation modeling inaccuracy. Moreover, the nonlinear adaptive control scheme is effective to improve the control accuracy of the formation keeping. 展开更多
关键词 spacecraft formation flying. Libration pointHalo orbit - Nonlinear control
下载PDF
Robust attitude coordinated control for spacecraft formation with communication delays 被引量:7
2
作者 Jian ZHANG Qinglei HU +1 位作者 Danwei WANG Wenbo XIE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1071-1085,共15页
In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator ... In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator saturation.Initially,a sliding mode delay-dependent attitude coordinated controller is proposed under bounded external disturbances.However,neither inertia uncertainty nor actuator constraint has been taken into account.Then,a robust saturated delaydependent attitude coordinated control law is further derived,where uncertainties and external disturbances are handled by Chebyshev neural networks(CNN).In addition,command filter technique is introduced to facilitate the backstepping design procedure,through which actuator saturation problem is solved.Thus the spacecraft in the formation are able to track the reference attitude trajectory even in the presence of time-varying communication delays.Rigorous analysis is presented by using Lyapunov-Krasovskii approach to demonstrate the stability of the closed-loop system under both control algorithms.Finally,the numerical examples are carried out to illustrate the efficiency of the theoretical results. 展开更多
关键词 Actuator saturation Attitude control Communication delays Neural networks spacecraft formation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部