期刊文献+
共找到4,446篇文章
< 1 2 223 >
每页显示 20 50 100
A turbulent mass diffusivity model for analyzing the mixing characteristics in an impinging stream-rotating packed bed
1
作者 Chao Zhang Youzhi Liu +4 位作者 Weizhou Jiao Guisheng Qi Zhiguo Yuan Qiaoling Zhang Hongyan Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期133-143,共11页
In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is si... In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB. 展开更多
关键词 Impinging stream-rotating packed bed turbulent mass diffusivity model Computational fluid dynamics Mixing performance Segregation index
下载PDF
Stochastic Analysis and Modeling of Velocity Observations in Turbulent Flows
2
作者 Evangelos Rozos Jorge Leandro Demetris Koutsoyiannis 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期45-56,共12页
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i... Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment. 展开更多
关键词 Smart modeling turbulent flows Data analysis Stochastic analysis Image velocimetry
下载PDF
Modeling of turbulent,isothermal and cryogenic cavitation under attached conditions 被引量:11
3
作者 Chien-Chou Tseng Yingjie Wei +1 位作者 GuoyuWang Wei Shyy 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第3期325-353,共29页
Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational ... Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational strat- egies for cavitation predictions under both isothermal and cryogenic conditions, with an emphasis on the attached cav- ity. The review considers alternative cavitation models along Reynolds-averaged Navier-Stokes and very lager eddy simu- lation turbulence approaches to ensure that the computational tools can handle flows of engineering interests. Observing the substantial uncertainties associated with both modeling and experimental information, surrogate modeling strategies are reviewed to assess the implications and relative impor- tance of the various modeling and materials parameters. The exchange between static and dynamic pressures under the influence of the viscous effects can have a noticeable impact on the effective shape of a solid object, which can impact the cavitation structure. The thermal effect with respect to evaporation and condensation dynamics is examined to shed light on the fluid physics associated with cryogenic cav- itation. The surrogate modeling techniques are highlighted in the context of modeling sensitivity assessment. Keywords 展开更多
关键词 CAVITATION Cryogenic liquidThermal effects turbulence model - Surrogate model
下载PDF
Numerical Simulation on Gas-Solid Two-Phase Turbulent Flow in FCC Riser Reactors(Ⅰ) Turbulent Gas-Solid Flow-Reaction Model 被引量:3
4
作者 高金森 徐春明 +2 位作者 杨光华 郭印诚 林文漪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第1期16-24,共9页
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,... Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model. 展开更多
关键词 RISER REACTOR turbulent FLOW GAS-SOLID FLOW flow-reaction model numerical algorithm
下载PDF
NUMERICAL SIMULATION OF METHANE-AIR TURBULENT JET FLAME USING A NEW SECOND-ORDER MOMENT MODEL 被引量:4
5
作者 陈兴隆 周力行 张健 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第1期41-47,共7页
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using... A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application. 展开更多
关键词 turbulent combustion second-order moment model numerical simulation
下载PDF
Numerical prediction of inner turbulent flow in conical diffuser by using a new five-point scheme and DLR k-ε turbulence model 被引量:2
6
作者 蒋光彪 何永森 +1 位作者 舒适 肖映雄 《Journal of Central South University》 SCIE EI CAS 2008年第S1期181-186,共6页
The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence mod... The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved. 展开更多
关键词 conical DIFFUSER turbulent flow DLR k-ε turbulence model 5-point scheme ALGEBRAIC MULTIGRID method(AMG)
下载PDF
Turbulence and cavitation models for time-dependent turbulent cavitating flows 被引量:10
7
作者 Chien-Chou Tseng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第4期473-487,共15页
Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational c... Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development. 展开更多
关键词 Cavitation turbulence model Cavitationmodel Hybrid model
下载PDF
IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS 被引量:2
8
作者 唐学林 钱忠东 吴玉林 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期354-365,共12页
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter... The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical. 展开更多
关键词 kinetic theory turbulent two-phase flow dynamic sub-grid-scale model CONDUIT
下载PDF
ALGEBRAIC TURBUL ENCE MODEL WITH MEM ORY FOR COMPUTATION OF 3-D TURBULENT BOUNDARY LAYERS WITH VALIDATION 被引量:2
9
作者 忻鼎定 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第2期65-74,共10页
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of press... Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses. 展开更多
关键词 boundary layer turbulence model with memory three dimensional computation experimental technique
下载PDF
Assessment of k–ε models using tetrahedral grids to describe the turbulent flow field of a PBT impeller and validation through the PIV technique 被引量:3
10
作者 Victor X. Mendoza-Escamilla Alejandro Alonzo-Garcia +3 位作者 Helvio R. Mollinedo Israel Gonzalez-Neria J. Antonio Yanez-Varela Sergio A. Martinez-Delgadillo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期942-956,共15页
In turbulence modeling, the RNG and Realizable models have important improvements in the turbulent production and dissipation terms in comparison to the Standard. The selection of the appropriate turbulence model has ... In turbulence modeling, the RNG and Realizable models have important improvements in the turbulent production and dissipation terms in comparison to the Standard. The selection of the appropriate turbulence model has an impact on the convergence and solution in STRs, and they are used in mixing, multiphase modeling or as starting solution of transient models as DES and LES. Although there are several studies with the pitched blade turbine(PBT) impeller, most of them used the Standard model as representative of all k–ε models, using structured hexahedral grids composed of low number of cells, and in some cases under axial symmetry assumptions.Accordingly, in this work the assessment of the Standard, RNG and Realizable models to describe the turbulent flow field of this impeller, using the Multiple Reference Frame(MRF) and Sliding Mesh(SM) approaches with tetrahedral domains in dense grids, is presented. This kind of cell elements is especially suitable to reproduce complex geometries. Flow velocities and turbulent parameters were verified experimentally by PIV and torque measurements. The three models were capable of predicting fairly the pumping number, the power number based on torque, and velocities. Although the RNG improved the predictions of the turbulent kinetic energy and dissipation rate, the Realizable model presented better performance for both approaches. All models failed in the prediction of the total dissipation rate, and a dependence of its value on the number of cells for the MRF was found. 展开更多
关键词 Tetrahedral grids PIV turbulent flow k-ε models Stirred vessel
下载PDF
Heat Transfer and Flow Characteristics Predictions with a Refined k-ε-f_u Turbulent Model in Impinging Jet 被引量:1
11
作者 Qinglin Niu Biao Chen +2 位作者 Zhihong He Jianfei Tong Shikui Dong 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期9-17,共9页
Local heat transfer and flow characteristics in a round turbulent impinging jet for Re≈23 000 is predicted numerically with the RANS approach and a k-ε-fu turbulence model. The heat transfer predictions and turbulen... Local heat transfer and flow characteristics in a round turbulent impinging jet for Re≈23 000 is predicted numerically with the RANS approach and a k-ε-fu turbulence model. The heat transfer predictions and turbulence parameters are verified against the axis-symmetric free jet impingement measurements and compared with previous other turbulence models, and results show the k-ε-fu model has a good performance in predictions of the local wall heat transfer coefficient, and in agreement with measurements in mean velocity profiles at different radial positions as well. The numerical model is further used to examine the effect of the fully confined impingement jet on the local Nusselt number. Local Nusselt profiles in x and y-centerlines for the target plate over three separation distances are predicted. Compared with the experimental data, the numerical results are accurate in the central domain around the stagnation region and present a consistent structure distribution. 展开更多
关键词 HEAT TRANSFER IMPINGEMENT flow k-ε-fu turbulENCE model Nusselt NUMBER
下载PDF
Effects of the Reynolds number on a scale-similarity model of Lagrangian velocity correlations in isotropic turbulent flows 被引量:1
12
作者 Zhaoyu SHI Jincai CHEN Guodong JIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第11期1605-1616,共12页
A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZH... A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η ≡ η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η ∝ R_λ^(1.39) obtained from the numerical data. 展开更多
关键词 turbulent mixing relative dispersion Lagrangian velocity correlation scalesimilarity model dispersion velocity Reynolds number effect
下载PDF
Artificial neural network-based one-equation model for simulation of laminar-turbulent transitional flow 被引量:2
13
作者 Lei Wu Bing Cui Zuoli Xiao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期50-57,共8页
A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equa... A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equation of the intermittency factor in transition-predictive Spalart-Allmaras(SA)-γmodel.By taking SA-γmodel as the benchmark,the present ANN model is trained at two airfoils with various angles of attack,Mach numbers and Reynolds numbers,and tested with unseen airfoils in different flow states.The a posteriori tests manifest that the mean pressure coefficient,skin friction coefficient,size of laminar separation bubble,mean streamwise velocity,Reynolds shear stress and lift/drag/moment coefficient from the present two-way coupling ANN model almost coincide with those from the benchmark SA-γmodel.Furthermore,the ANN model proves to exhibit a higher calculation efficiency and better convergence quality than traditional SA-γmodel. 展开更多
关键词 TRANSITION turbulENCE Eddy-viscosity model Artificial neural network Intermittency factor
下载PDF
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
14
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 Artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
下载PDF
Quadratic and cubic eddy-viscosity models in turbulent supercavitating flow computation 被引量:1
15
作者 Ying Chen,~(1,a)) Chuanjing Lu,~(1,2) and Xin Chen~1 1)Department of Engineering Mechanics,School of Naval Architecture,Ocean and Civil Engineering, Shanghai Jiao Tong University,Shanghai 200240,China 2)State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第3期66-70,共5页
Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical predictio... Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical prediction of supercavitating flows,which are accompanied with large density ratio and large-scaled swirling flow structures.The applications of the NLEVM were carried out through a self-developed cavitation codes,coupled with a cavitation model based on the transport equation of liquid phase.These NLEVM were verified capable of capturing more accurate macroscopic shape and hydrodynamic property of supercavity by the benchmark problems of supercavities over simple objects.Finally,the cubic NLEVM was further applied to the numerical prediction of supercavitating flow around a complex submerged vehicle.The corresponding cavitation behaviors were explored in detail to provide beneficial experience for further research. 展开更多
关键词 supercavitating flow numerical simulation non-linear turbulence model
下载PDF
Three-dimensional turbulent model of heat transfer and fluid flow in GTAW process 被引量:1
16
作者 董志波 徐艳利 +3 位作者 魏艳红 马瑞 王淑娟 翟国富 《China Welding》 EI CAS 2010年第2期23-27,共5页
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f... A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results. 展开更多
关键词 heat transfer fluid flow GTAW K-ε turbulent fluid flow model
下载PDF
Modelling of Turbulent Nonpremixed CH4/H2 Flame Using Second-Moment Turbulence Closure Models 被引量:1
17
作者 李国岫 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第1期1-8,共8页
Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SS... Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame. 展开更多
关键词 modelLING nonpremixed CH_4/H_2 flame second-moment turbulence closure
下载PDF
Application of WSGSA Model in Predicting Temperature and Soot in C_(2)H_(4)/Air Turbulent Diffusion Flame 被引量:1
18
作者 HE Zhenzong ZHU Ruihan +2 位作者 DONG Chuanhui MAO Junkui FU Yao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期482-492,共11页
Soot,a product of insufficient combustion,is usually in the form of aggregate. The multi-scattering of soot fractal aggregates has been proved to play an important role in studying the soot radiative properties,which ... Soot,a product of insufficient combustion,is usually in the form of aggregate. The multi-scattering of soot fractal aggregates has been proved to play an important role in studying the soot radiative properties,which is rarely considered in predicting the radiative heat transfer in combustion flame. In the present study,based on the weighted sum of gray soot fractal aggregate(WSGSA) model,which is used to predict the temperature field and soot aggregates in turbulent diffusion flame,the flame temperature distribution and soot volume fraction distribution under the conditions of the model without considering radiation,the default radiation model in Fluent software and the WSGSA model are calculated respectively. The results show that the flame temperature will be seriously overestimated without considering radiation and the maximum relative discrepancy of flame centerline temperature is about 64.5%. The accuracy will be improved by the default radiation model in the Fluent software,but the flame temperature is still overestimated and the maximum relative discrepancy of flame centerline temperature is about 42.1%. However,more satisfactory results can be obtained by the WSGSA model,and the maximum relative discrepancy of flame centerline temperature is no more than 15.3%. Similar conclusions can also be obtained in studying the temperature distribution along different flame heights. Moreover,the soot volume fraction can be predicted more accurately with the application of the WSGSA model. Both without considering radiation and using the default radiation model in the Fluent software will result in the underestimating of soot volume fraction. All the results reveal that the WSGSA model can be used to predict the temperature and soot aggregates in the CH/air turbulent diffusion flame. 展开更多
关键词 radiative heat transfer WSGSA model soot radiation turbulent diffusion flame soot aggregate
下载PDF
Modeling and Numerical Simulation of Wings Effect on Turbulent Flow between two contra-rotating cylinders 被引量:1
19
作者 Maher Raddaoui 《Journal of Modern Physics》 2011年第5期392-397,共6页
Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- me... Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings. 展开更多
关键词 Pollution turbulence Combustion WING modelING Numerical Simulation Contra-Rotating Cylinders REYNOLDS Stress model Source TERM
下载PDF
Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow 被引量:1
20
作者 Qingjia Meng Zhou Jiang Jianchun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期58-69,共12页
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ... Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model. 展开更多
关键词 Compressible turbulent channel flow Fully connected neural network model Large eddy simulation
下载PDF
上一页 1 2 223 下一页 到第
使用帮助 返回顶部