The flexibility of flapping-wing strongly affects the aerodynamic performance of Flapping-wing Micro Air Vehicle (FMAV),and the deformations in span-wise and chord-wise directions are coupled together in flight.In thi...The flexibility of flapping-wing strongly affects the aerodynamic performance of Flapping-wing Micro Air Vehicle (FMAV),and the deformations in span-wise and chord-wise directions are coupled together in flight.In this study,the flexible deformation is formulated in span-wise and chord-wise separately in order to analyze its effects on aerodynamic behavior.The preconditioned Navier-Stokes equations based on chimera grid are used in the computational fluid dynamics method to study the aerodynamic effects caused by flexible deformation,and the simulation results are compared with experimental test to illustrate the capability of above method.Based on our results,it is clearly showed that the span-wise flexible deformation should be limited in a small range to achieve higher aerodynamic performance and the chord-wise deformation could enhance the aerodynamic performance.The results also suggest that FMAV designers should design the flapping-wing with high stiffness leading edge to limit the span-wise deformation,and more flexible chord ribs to keep chord-wise deformation in suitable range.展开更多
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are consid...This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are considered.An in-house unsteady flow solver based on hybrid moving grids.is adopted for unsteady flow simulations.We focus on two main issues in this study,i.e.,the influence of the proportion of down-stroke and the effect of span-wise twisting.Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process.The preferable proportion is about 0.7 by using the present geometry and kinematic model,which is very close to the observed data.Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting.Two cases with different reduced frequencies are simulated and compared with each other.The numerical results show that the power consumption reduces by more than 20%,and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases.The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack.These conclusions will be helpful for the high-performance micro air vehicle (MAV) design.展开更多
This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine(HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade i...This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine(HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade is a challenging endeavor. In this research, the HAWT model with 2.4 m diameter was tested in the large wind tunnel. The flow around the rotating blade surface was measured simultaneously for three velocity components, and two probes were used for the synchronized measurement of three-dimensional flow components. The local velocity was detected for the single seeding particle measured in the point where three pairs of laser beams intersected. Blade sections of interest in this study are composed of radial positions r/R = 0.3, 0.5 and 0.7. Optimum and low tip speed ratio flow characteristics were also compared. The velocity flow vector, skin friction coefficient and bound circulation were calculated from LDV measurements, and the experimental research showed reasonably and clearly the experimental results.展开更多
基金supported by the Postdoctoral Science Foundation of China(20100481369)
文摘The flexibility of flapping-wing strongly affects the aerodynamic performance of Flapping-wing Micro Air Vehicle (FMAV),and the deformations in span-wise and chord-wise directions are coupled together in flight.In this study,the flexible deformation is formulated in span-wise and chord-wise separately in order to analyze its effects on aerodynamic behavior.The preconditioned Navier-Stokes equations based on chimera grid are used in the computational fluid dynamics method to study the aerodynamic effects caused by flexible deformation,and the simulation results are compared with experimental test to illustrate the capability of above method.Based on our results,it is clearly showed that the span-wise flexible deformation should be limited in a small range to achieve higher aerodynamic performance and the chord-wise deformation could enhance the aerodynamic performance.The results also suggest that FMAV designers should design the flapping-wing with high stiffness leading edge to limit the span-wise deformation,and more flexible chord ribs to keep chord-wise deformation in suitable range.
基金Project supported by the National Key Research and Development Program(No.2016YFB0200700)the National Natural Science Foundation of China(Nos.11532016 and 11672324)
文摘This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are considered.An in-house unsteady flow solver based on hybrid moving grids.is adopted for unsteady flow simulations.We focus on two main issues in this study,i.e.,the influence of the proportion of down-stroke and the effect of span-wise twisting.Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process.The preferable proportion is about 0.7 by using the present geometry and kinematic model,which is very close to the observed data.Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting.Two cases with different reduced frequencies are simulated and compared with each other.The numerical results show that the power consumption reduces by more than 20%,and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases.The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack.These conclusions will be helpful for the high-performance micro air vehicle (MAV) design.
文摘This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine(HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade is a challenging endeavor. In this research, the HAWT model with 2.4 m diameter was tested in the large wind tunnel. The flow around the rotating blade surface was measured simultaneously for three velocity components, and two probes were used for the synchronized measurement of three-dimensional flow components. The local velocity was detected for the single seeding particle measured in the point where three pairs of laser beams intersected. Blade sections of interest in this study are composed of radial positions r/R = 0.3, 0.5 and 0.7. Optimum and low tip speed ratio flow characteristics were also compared. The velocity flow vector, skin friction coefficient and bound circulation were calculated from LDV measurements, and the experimental research showed reasonably and clearly the experimental results.