Based on the principle of thermal conduction, three metal alloys (stainless steel, copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indic...Based on the principle of thermal conduction, three metal alloys (stainless steel, copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indicate that the mass loss and surface erosion morphology of the electrode are related with the electrode material (conductivity σ, melting point Tin, density p and thermal capacity c) and the impulse transferred charge (or energy) per impulse for the same total impulse transferred charge. The experimental results indicate that the mass loss of stainless steel, copper-tungsten and graphite are 380.10 μg/C, 118.10 μg/C and 81.90 μg/C respectively under the condition of a total impulse transferred charge of 525 C and a transferred charge per impulse of 10.5 C. Under the same impulse transferred charge, the mass loss of copper-tungsten(118.10 μg/C) with the transferred charge per impulse at 10.5 C is far larger than the mass loss (38.61μg/C) at a 1.48 C transferred charge per impulse. The electrode erosion mechanism under high energy impulse arcs is analyzed briefly and it is suggested that by selecting high conductive metal or metal alloy as the electrode material of a high energy impulse spark gap switch and setting high erosion resistance material at the top of the electrode, the mass loss of the electrode can be reduced and the life of the switch prolonged.展开更多
A metal foil spark gap switch is fabricated by using magnetron sputtering deposition technology and standard microelectronic technology. The switch has two main electrodes and a trigger electrode. Stylus profiler is e...A metal foil spark gap switch is fabricated by using magnetron sputtering deposition technology and standard microelectronic technology. The switch has two main electrodes and a trigger electrode. Stylus profiler is employed to measure the distance between the main electrodes and the dimensions of the trigger electrode. The discharge characteristics of the metal foil spark gap switch are discussed. The switch has short delay time and low time jitter. When it is fired by a conventional capacitive discharge unit (CDU), the firing circuit has low inductance and resistance. Because of its low profile structure, it can be easily integrated with the bridge foil used in a conventional exploding foil initiator system (EFIS).展开更多
Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap swit...Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.展开更多
文摘Based on the principle of thermal conduction, three metal alloys (stainless steel, copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indicate that the mass loss and surface erosion morphology of the electrode are related with the electrode material (conductivity σ, melting point Tin, density p and thermal capacity c) and the impulse transferred charge (or energy) per impulse for the same total impulse transferred charge. The experimental results indicate that the mass loss of stainless steel, copper-tungsten and graphite are 380.10 μg/C, 118.10 μg/C and 81.90 μg/C respectively under the condition of a total impulse transferred charge of 525 C and a transferred charge per impulse of 10.5 C. Under the same impulse transferred charge, the mass loss of copper-tungsten(118.10 μg/C) with the transferred charge per impulse at 10.5 C is far larger than the mass loss (38.61μg/C) at a 1.48 C transferred charge per impulse. The electrode erosion mechanism under high energy impulse arcs is analyzed briefly and it is suggested that by selecting high conductive metal or metal alloy as the electrode material of a high energy impulse spark gap switch and setting high erosion resistance material at the top of the electrode, the mass loss of the electrode can be reduced and the life of the switch prolonged.
文摘A metal foil spark gap switch is fabricated by using magnetron sputtering deposition technology and standard microelectronic technology. The switch has two main electrodes and a trigger electrode. Stylus profiler is employed to measure the distance between the main electrodes and the dimensions of the trigger electrode. The discharge characteristics of the metal foil spark gap switch are discussed. The switch has short delay time and low time jitter. When it is fired by a conventional capacitive discharge unit (CDU), the firing circuit has low inductance and resistance. Because of its low profile structure, it can be easily integrated with the bridge foil used in a conventional exploding foil initiator system (EFIS).
基金National Natural Science Foundation of China(No.50477027)
文摘Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.