期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Spark框架优化的大规模谱聚类并行算法 被引量:10
1
作者 崔艺馨 陈晓东 《计算机应用》 CSCD 北大核心 2020年第1期168-172,共5页
为解决谱聚类在大规模数据集上存在的计算耗时和无法聚类等性能瓶颈制约,提出了基于Spark技术的大规模数据集谱聚类的并行化算法。首先,通过单向循环迭代优化相似矩阵的构建,避免重复计算;然后,通过位置变换和标量乘法替换来优化Laplac... 为解决谱聚类在大规模数据集上存在的计算耗时和无法聚类等性能瓶颈制约,提出了基于Spark技术的大规模数据集谱聚类的并行化算法。首先,通过单向循环迭代优化相似矩阵的构建,避免重复计算;然后,通过位置变换和标量乘法替换来优化Laplacian矩阵的构建与正规化,降低存储需求;最后,采用近似特征向量计算来进一步减少计算量。不同测试数据集上的实验结果表明:随着测试数据集的规模增加,所提算法的单向循环迭代和近似特征值计算的运行时间呈线性增长,增长缓慢,其近似特征向量计算与精确特征向量计算取得相近的聚类效果,并且算法在大规模数据集上表现出良好的可扩展性。在获得较好的谱聚类性能的基础上,改进算法提高了运行效率,有效缓解了谱聚类的计算耗时及无法聚类问题。 展开更多
关键词 大规模谱聚类 相似矩阵稀疏化 单向循环迭代 近似特征向量 分布式spark并行计算
下载PDF
利用数据变换与并行运算的闭频繁项集挖掘方法 被引量:12
2
作者 党红恩 赵尔平 +1 位作者 刘炜 雒伟群 《湘潭大学自然科学学报》 CAS 2018年第1期119-122,共4页
针对传统闭频繁项集(CFI)挖掘方法耗时长、效率低的问题,提出一种基于数据变换与并行运算(DTPC)的新型挖掘方法:设计基于质数对数运算的数据变换方法,将大量数据转换成简单的数字;利用Spark并行框架中的平方/开方运算将这些数字转换成... 针对传统闭频繁项集(CFI)挖掘方法耗时长、效率低的问题,提出一种基于数据变换与并行运算(DTPC)的新型挖掘方法:设计基于质数对数运算的数据变换方法,将大量数据转换成简单的数字;利用Spark并行框架中的平方/开方运算将这些数字转换成频繁项集.3 000万篇文章的大数据集实验结果表明,提出的DTPC算法可以大幅度提升数据挖掘效率,同时减少计算资源的不必要浪费. 展开更多
关键词 闭频繁项集 大数据挖掘 质数对数变换 spark并行计算框架
下载PDF
复杂属性条件下基于Spark的clique社区搜索算法
3
作者 佘鑫 何震瀛 《计算机工程》 CAS CSCD 北大核心 2021年第12期54-61,70,共9页
现有的社区搜索算法难以在网络中找到满足给定复杂属性条件的社区。同时,随着网络规模的不断扩大,单机串行的社区搜索算法也已无法有效地处理大规模的网络数据。针对复杂属性条件下的clique社区搜索问题,提出一种基于Spark的搜索算法。... 现有的社区搜索算法难以在网络中找到满足给定复杂属性条件的社区。同时,随着网络规模的不断扩大,单机串行的社区搜索算法也已无法有效地处理大规模的网络数据。针对复杂属性条件下的clique社区搜索问题,提出一种基于Spark的搜索算法。在Spark并行计算框架的基础上,结合图的结构特征和内容属性,根据由布尔表达式定义的复杂属性条件采取不同的搜索策略,搜索时利用属性的搜索成本和扩展成本进行局部优化,从而加快搜索过程。实验结果表明,与结构优先或属性优先的社区搜索算法相比,该算法在不同属性条件、网络规模和节点数目的情况下均能保证搜索准确性并提高搜索效率。 展开更多
关键词 社区搜索 复杂属性条件 布尔表达式 spark并行计算框架 clique结构
下载PDF
串行式混合类型航道船舶交通组织优化 被引量:1
4
作者 王志强 张新宇 +1 位作者 李倍莹 王婧贇 《计算机应用与软件》 北大核心 2023年第2期26-32,39,共8页
随着港口航道类型逐渐向多样化、复杂化的混合类型趋势发展,港口交通问题愈发严峻。调研国内外港口混合类型航道,抽象出一种串行式简单混合类型航道作为研究对象。分析混合航道船舶交通状况,构建以单向/混合通航模式转化、混合航道异类... 随着港口航道类型逐渐向多样化、复杂化的混合类型趋势发展,港口交通问题愈发严峻。调研国内外港口混合类型航道,抽象出一种串行式简单混合类型航道作为研究对象。分析混合航道船舶交通状况,构建以单向/混合通航模式转化、混合航道异类子航道间通航模式切换、港池连接水域船舶交通冲突消解等为约束的串行式简单混合类型航道船舶交通组织优化模型。基于Spark并行计算框架,结合NSGA-II算法遗传操作天然并行性特点,提出一种Spark分布式多目标遗传算法,将全部种群分散在多节点上并行执行算法的遗传操作。实验表明,提出的算法具有较快的收敛速度和较好的稳定性,模型求解出的优化方案合理、有效。 展开更多
关键词 混合类型航道 船舶交通组织优化 分布式多目标遗传算法 spark并行计算框架
下载PDF
基于Spark计算框架的路网核密度估计并行算法 被引量:7
5
作者 郭宇达 朱欣焰 +1 位作者 呙维 佘冰 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2020年第2期289-295,共7页
路网核密度估计是路网约束下针对事件点的聚类分析方法,常用于研究交通事故、城市犯罪、车辆轨迹等事件的空间分布模式。传统单机串行的路网核密度估计算法在小数据量条件下的运行效率较高,但随着数据量的增加,算法性能显著下降,无法满... 路网核密度估计是路网约束下针对事件点的聚类分析方法,常用于研究交通事故、城市犯罪、车辆轨迹等事件的空间分布模式。传统单机串行的路网核密度估计算法在小数据量条件下的运行效率较高,但随着数据量的增加,算法性能显著下降,无法满足实际应用需求。针对路网核密度估计中的道路网分割和核密度计算,设计并实现了基于Spark计算框架的高效并行算法。以交通事故为例,通过4组实验进行对比分析。结果表明,基于Spark计算框架的路网核密度估计并行算法具有较高的运算效率,并具备良好的可拓展性。 展开更多
关键词 路网约束 核密度分析 spark并行计算 空间聚类 事故分析
原文传递
基于PSO-DE-BP的光伏发电功率短期预测 被引量:4
6
作者 刘春芳 王攀攀 曹菲 《计算机测量与控制》 2023年第5期180-186,共7页
提高光伏发电功率预测精度对保障智能电网安全稳定运行有重要意义;针对传统BP神经网络存在预测精度不高且收敛速度慢的弊端,提出一种基于粒子群(PSO)差分进化(DE)并行计算优化BP神经网络的光伏发电短期预测方法;首先分析影响因素重要程... 提高光伏发电功率预测精度对保障智能电网安全稳定运行有重要意义;针对传统BP神经网络存在预测精度不高且收敛速度慢的弊端,提出一种基于粒子群(PSO)差分进化(DE)并行计算优化BP神经网络的光伏发电短期预测方法;首先分析影响因素重要程度,通过带权重的欧式距离筛选相似的训练样本集;其次,对粒子群分组,通过粒子群和差分进化混合算法对粒子组内和组间优化,以保证种群多样性、提高预测稳定和精度、避免局部最优;然后,建立预测模型,通过基于spark的内存计算平台,将PSO-DE-BP算法并行优化以提高算法运行效率;最后,根据不同天气类型的预测结果对模型进行分析验证,此方法比PSO-BP、BP算法模型具有更高的稳定性和预测精度。 展开更多
关键词 光伏发电预测 BP神经网络 差分进化 粒子群分组 spark并行计算
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部