期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
用于人脸识别的改进MKD-SRC方法
1
作者 何珺 孙波 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期12-18,共7页
稀疏表示是近年来图像处理、模式识别及计算机视觉领域中的一个研究热点,广泛应用在图像压缩、图像去噪及修复、目标检测、物体识别等各个方向.在人脸识别的应用背景下,一种基于局部特征的多任务稀疏表示分类方法,即基于多任务多关键点... 稀疏表示是近年来图像处理、模式识别及计算机视觉领域中的一个研究热点,广泛应用在图像压缩、图像去噪及修复、目标检测、物体识别等各个方向.在人脸识别的应用背景下,一种基于局部特征的多任务稀疏表示分类方法,即基于多任务多关键点特征描述子(multi-keypoint descriptors,MKD)的稀疏识别(MKD-SRC)方法虽具有良好的旋转、尺度不变性,但计算复杂度较高,且对光照的鲁棒性并不理想.本文就此问题分析了MKD-SRC方法的原理和前提,提出基于线性子空间和极大似然概率的改进方法,并在公开人脸数据库上对方法的性能进行了测试.实验结果表明,改进的MKD-SRC方法在计算效率以及对大块噪声污染和光照不均匀的鲁棒性这两个方面取得了良好的效果. 展开更多
关键词 人脸识别 稀疏表示分类方法 改进MKD-src 线性子空间 极大似然概率
下载PDF
基于压缩感知的人脸识别方法 被引量:6
2
作者 邹伟 李元祥 +1 位作者 杨俊杰 周则明 《计算机工程》 CAS CSCD 2012年第24期133-136,共4页
基于稀疏重构的分类方法具有较好的识别效果,但计算复杂度高。为此,提出基于压缩感知的人脸识别方法 COMP,将L1范数最小化重构算法替换成正交匹配追踪(OMP)算法,以降低复杂度,并在OMP中引入模式类别信息,使该方法具有更强的分类能力。基... 基于稀疏重构的分类方法具有较好的识别效果,但计算复杂度高。为此,提出基于压缩感知的人脸识别方法 COMP,将L1范数最小化重构算法替换成正交匹配追踪(OMP)算法,以降低复杂度,并在OMP中引入模式类别信息,使该方法具有更强的分类能力。基于YaleB人脸库的实验结果表明,COMP在低维度时识别率高于OMP。 展开更多
关键词 基于稀疏重构的分类方法 稀疏重构 L1范数最小化 正交匹配追踪算法 COMP方法
下载PDF
改进稀疏表示算法在人脸识别中的应用 被引量:2
3
作者 刘霞 罗文辉 苏义鑫 《计算机工程与应用》 CSCD 北大核心 2019年第14期191-197,共7页
人脸识别的主要难度在于,受到光照变化、表情变化以及遮挡的影响,会使得采集的不同人的人脸图像具有相似性。为有效解决基于稀疏表示的分类算法(Sparse Representation-based Classification,SRC)在人脸训练样本不足时会导致识别率降低... 人脸识别的主要难度在于,受到光照变化、表情变化以及遮挡的影响,会使得采集的不同人的人脸图像具有相似性。为有效解决基于稀疏表示的分类算法(Sparse Representation-based Classification,SRC)在人脸训练样本不足时会导致识别率降低和稀疏表示求解效率较低的问题,提出了基于判别性低秩分解与快速稀疏表示分类(LowRank Recovery Fast Sparse Representation-based Classification,LRR_FSRC)的人脸识别算法。利用低秩分解理论得到低秩恢复字典以及稀疏误差字典,结合低秩分解和结构不相干理论,训练出判别性低秩类字典和稀疏误差字典,并把它们结合作为测试时所用的字典;用坐标下降法来求解稀疏系数以提高了计算效率;根据重构误差实现测试样本的分类。在YALE和ORL数据库上的实验结果表明,提出的基于LRR_FSRC的人脸识别方法具有较高的识别率和计算效率。 展开更多
关键词 人脸识别 稀疏表示 低秩矩阵恢复 坐标下降法 基于稀疏表示的分类(src)算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部