Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), it...Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.展开更多
The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT ...The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone.展开更多
Co-phasing between different sub-apertures is important for sparse optical synthetic aperture telescope systems to achieve high-resolution imaging. For co-phasing detection in such a system, a new aspect of the system...Co-phasing between different sub-apertures is important for sparse optical synthetic aperture telescope systems to achieve high-resolution imaging. For co-phasing detection in such a system, a new aspect of the system's far-field interferometry is analysed and used to construct a novel method to detect piston errors. An optical setup is built to demonstrate the efficacy of this method. Experimental results show that the relative differences between measurements by this method and the criterion are less than 4%, and their residual detecting errors are about 0.01 A for different piston errors, which makes the use of co-phasing detection within such a system promising.展开更多
This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects ...This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.展开更多
This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused ...This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused by the slow-speed motion of ship targets.Then,we realize signal restoration and image reconstruction with the alternating direction method of multipliers(ADMM).Furthermore,we adopt the interferometric technique to produce the three-dimensional(3D)images of ship targets,namely interferometric inverse synthetic aperture radar(InISAR)imaging.Experiments based on the simulated data are utilized to verify the validity of the proposed method.展开更多
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used...In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.展开更多
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ...For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.展开更多
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-...The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data tr...As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This paper concerns the coprime sampl which are proposed recently but ng and nested sparse sampling, have never been applied to real world for target detection, and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Finally, the influence of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR.展开更多
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed arra...An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed array measurements) method to extend array aperture and suppress Gaussian noise, First, successive measurements of a virtual uniform linear array were constructed by applying lburth-order cumulants to measurements of uniform linear array; Gaussian noise in these measurements was also eliminated. Then, the array was extended by compensating phase differences using the ETAM method, Finally, the synthetic aperture was extended further by the fourth-order cumulants technique. The proposed FOC-ETAM-FOC method not only improves angular resolution and array gain, but also effectively suppresses Gaussian noise. Furthermore, it inherits the advantages of the ETAM method. Simulation results showed that the FOC-ETAM-FOC method achieved better angular resolution and array gain than the ETAM method. Furthermore this method outperforms the ETAM method in Gaussian noise environment.展开更多
For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consis...For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.展开更多
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a...Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.展开更多
Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.I...Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.展开更多
A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed ...A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed manner is improved to resolve the unbalance problem under amplitude and phase control. In order to validate the algorithm correct and effective, an actual engineering application example is investigated. The beam synthesis results of 1.0~4.5 times broadening under the phase only control and the amplitude and phase control using improved PMA are given. The results show that the beam directivity, the beam broadening, and the side-lobe level requirements were met. It is demonstrated that the improved PMA was effective and feasible for SAR application.展开更多
文摘Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.
基金National Key Research and Development Program of China(Grant No.2019YFA0709003)National Natural Science Foundation of China(Grant No.51905079)Liaoning Revitalization Talents Program(Grant No.XLYC1902082).
文摘The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61008038)
文摘Co-phasing between different sub-apertures is important for sparse optical synthetic aperture telescope systems to achieve high-resolution imaging. For co-phasing detection in such a system, a new aspect of the system's far-field interferometry is analysed and used to construct a novel method to detect piston errors. An optical setup is built to demonstrate the efficacy of this method. Experimental results show that the relative differences between measurements by this method and the criterion are less than 4%, and their residual detecting errors are about 0.01 A for different piston errors, which makes the use of co-phasing detection within such a system promising.
文摘This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.
基金This work was supported by the National Natural Science Foundation of China(61871146).
文摘This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused by the slow-speed motion of ship targets.Then,we realize signal restoration and image reconstruction with the alternating direction method of multipliers(ADMM).Furthermore,we adopt the interferometric technique to produce the three-dimensional(3D)images of ship targets,namely interferometric inverse synthetic aperture radar(InISAR)imaging.Experiments based on the simulated data are utilized to verify the validity of the proposed method.
文摘In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.
基金supported by the National Natural Science Foundation of China(61640006)the Natural Science Foundation of Shannxi Province,China(2019JM-386).
文摘For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.
基金Supported by the National Basic Research Program (973) of China (No. 2009CB72400)
文摘The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金supported by the National Natural Science Foundation of China(61571388U1233109)
文摘As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This paper concerns the coprime sampl which are proposed recently but ng and nested sparse sampling, have never been applied to real world for target detection, and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Finally, the influence of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR.
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
基金Supported by the National Science Foundation of China (No.60872146)
文摘An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed array measurements) method to extend array aperture and suppress Gaussian noise, First, successive measurements of a virtual uniform linear array were constructed by applying lburth-order cumulants to measurements of uniform linear array; Gaussian noise in these measurements was also eliminated. Then, the array was extended by compensating phase differences using the ETAM method, Finally, the synthetic aperture was extended further by the fourth-order cumulants technique. The proposed FOC-ETAM-FOC method not only improves angular resolution and array gain, but also effectively suppresses Gaussian noise. Furthermore, it inherits the advantages of the ETAM method. Simulation results showed that the FOC-ETAM-FOC method achieved better angular resolution and array gain than the ETAM method. Furthermore this method outperforms the ETAM method in Gaussian noise environment.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6278)the China Postdoctoral Science Foundation(2015M582586)the China Academy of Space Technology Innovation Fund
文摘For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by the National Natural Science Foundation for Young Scientists of China
文摘Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.
基金This work was supported in part by the Key R&D Program of Shandong Province,China(No.2020CXGC010109)in part by the Beijing Municipal Science and Technology Project(Z181100003218015).
文摘Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.
文摘A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed manner is improved to resolve the unbalance problem under amplitude and phase control. In order to validate the algorithm correct and effective, an actual engineering application example is investigated. The beam synthesis results of 1.0~4.5 times broadening under the phase only control and the amplitude and phase control using improved PMA are given. The results show that the beam directivity, the beam broadening, and the side-lobe level requirements were met. It is demonstrated that the improved PMA was effective and feasible for SAR application.