期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
PERFORMANCE ANALYSIS OF PULSE COMPRESSION USING PHASE-CODED SIGNALS FOR SPARSE-ARRAY SYNTHETIC IMPULSE AND APERTURE RADAR
1
作者 Chen Baixiao Zhang Shouhong(Key Laboratory for Radar Signal Processing, Xidian Univ., Xi’an 710071) 《Journal of Electronics(China)》 1998年第4期332-338,共7页
Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), it... Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well. 展开更多
关键词 sparse array synthetic impulse and aperture RADAR Phase-coded Pulse compression
下载PDF
Resolution Enhancement in Ultrasonic TOFD Imaging by Combining Sparse Deconvolution and Synthetic Aperture Focusing Technique(Sparse-SAFT) 被引量:2
2
作者 Xu Sun Li Lin Shijie Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期141-149,共9页
The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT ... The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone. 展开更多
关键词 Time resolution Lateral resolution Time-of-flight diffraction(TOFD) sparse deconvolution synthetic aperture focusing technique(SAFT) sparse-SAFT
下载PDF
The co-phasing detection method for sparse optical synthetic aperture systems 被引量:1
3
作者 刘政 王胜千 饶长辉 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期600-607,共8页
Co-phasing between different sub-apertures is important for sparse optical synthetic aperture telescope systems to achieve high-resolution imaging. For co-phasing detection in such a system, a new aspect of the system... Co-phasing between different sub-apertures is important for sparse optical synthetic aperture telescope systems to achieve high-resolution imaging. For co-phasing detection in such a system, a new aspect of the system's far-field interferometry is analysed and used to construct a novel method to detect piston errors. An optical setup is built to demonstrate the efficacy of this method. Experimental results show that the relative differences between measurements by this method and the criterion are less than 4%, and their residual detecting errors are about 0.01 A for different piston errors, which makes the use of co-phasing detection within such a system promising. 展开更多
关键词 sparse-optical-synthetic-aperture co-phasing detection piston error
下载PDF
A New Dual Polarized Aperture-Coupled Printed Array for SAR Applications 被引量:1
4
作者 ZHONG Shun shi, CUI Jun hai Department of Communication and Information Engineering, Shanghai University, Shanghai 200072, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第4期295-298,共4页
This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects ... This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems. 展开更多
关键词 microstrip antenna array dual polarization aperture coupled finite difference time domain analysis synthetic aperture radar
下载PDF
Multi-static InISAR imaging for ships under sparse aperture 被引量:1
5
作者 JI Bingren WANG Yong +1 位作者 ZHAO Bin XU Rongqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期575-584,共10页
This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused ... This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused by the slow-speed motion of ship targets.Then,we realize signal restoration and image reconstruction with the alternating direction method of multipliers(ADMM).Furthermore,we adopt the interferometric technique to produce the three-dimensional(3D)images of ship targets,namely interferometric inverse synthetic aperture radar(InISAR)imaging.Experiments based on the simulated data are utilized to verify the validity of the proposed method. 展开更多
关键词 multi-static sparse aperture signal recovery inter-ferometric inverse synthetic aperture radar(InISAR) ship target alternating direction method of multipliers(ADMM)
下载PDF
Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain 被引量:1
6
作者 TIAN He DONG Chunzhu +1 位作者 YIN Hongcheng YUAN Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期56-67,共12页
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used... In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability. 展开更多
关键词 three-dimensional(3D)imaging synthetic aperture radar(SAR) sparse flight INTERFEROMETRY compressed sensing(CS)
下载PDF
Sparse three-dimensional imaging for forward-looking array SAR using spatial continuity
7
作者 LIU Xiangyang ZHANG Bingpeng +1 位作者 CAO Wei XIE Wenjia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期417-424,共8页
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ... For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR. 展开更多
关键词 forward-looking array synthetic aperture radar(FASAR) sparse three-dimensional imaging compressed sensing(CS) spatial continuity
下载PDF
CROSS-TRACK THREE APERTURES MILLIMETER WAVE SAR SIDE-LOOKING THREE-DIMENSIONAL IMAGING
8
作者 Teng Xiumin Li Daojing +2 位作者 Li Liechen Liu Bo Pan Zhouhao 《Journal of Electronics(China)》 2012年第5期375-382,共8页
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-... The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt. 展开更多
关键词 synthetic aperture Radar (SAR) sparse array Side-looking imaging Three-Dimensional (3D) imaging
下载PDF
A fast decoupled ISAR high-resolution imaging method using structural sparse information under low SNR 被引量:6
9
作者 XIANG Long LI Shaodong +2 位作者 YANG Jun CHEN Wenfeng XIANG Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期492-503,共12页
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp... Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition. 展开更多
关键词 sparse recovery inverse synthetic aperture radar (ISAR) imaging HIGH-RESOLUTION signal to noise ratio (SNR) STRUCTURAL sparse INFORMATION
下载PDF
SAR imaging method based on coprime sampling and nested sparse sampling 被引量:3
10
作者 Hongyin Shi Baojing Jia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1222-1228,共7页
As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data tr... As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This paper concerns the coprime sampl which are proposed recently but ng and nested sparse sampling, have never been applied to real world for target detection, and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Finally, the influence of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR. 展开更多
关键词 synthetic aperture radar (SAR) imaging compressivesensing coprime sampling nested sparse sampling.
下载PDF
SAR Image Despeckling by Sparse Reconstruction Based on Shearlets 被引量:4
11
作者 JI Jian LI Xiao +2 位作者 XU Shuang-Xing LIU Huan HUANG Jing-Jing 《自动化学报》 EI CSCD 北大核心 2015年第8期1495-1501,共7页
关键词 SAR图像 相干斑抑制 稀疏 合成孔径雷达图像 贝叶斯估计 重构 散斑噪声 乘性噪声
下载PDF
Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis 被引量:2
12
作者 ZHOU Kai LI Daojing +7 位作者 CUI Anjing HAN Dong TIAN He YU Haifeng DU Jianbo LIU Lei ZHU Yu ZHANG Running 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1143-1151,共9页
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third... The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period. 展开更多
关键词 principal component analysis(PCA) spaceborne synthetic aperture radar(SAR) sparse flight sparse spectrum by interferometry 3-D imaging
下载PDF
An Array Extension Method in a Noisy Environment 被引量:1
13
作者 李博 孙超 《Journal of Marine Science and Application》 2011年第2期226-232,共7页
An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed arra... An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed array measurements) method to extend array aperture and suppress Gaussian noise, First, successive measurements of a virtual uniform linear array were constructed by applying lburth-order cumulants to measurements of uniform linear array; Gaussian noise in these measurements was also eliminated. Then, the array was extended by compensating phase differences using the ETAM method, Finally, the synthetic aperture was extended further by the fourth-order cumulants technique. The proposed FOC-ETAM-FOC method not only improves angular resolution and array gain, but also effectively suppresses Gaussian noise. Furthermore, it inherits the advantages of the ETAM method. Simulation results showed that the FOC-ETAM-FOC method achieved better angular resolution and array gain than the ETAM method. Furthermore this method outperforms the ETAM method in Gaussian noise environment. 展开更多
关键词 array signal processing array extension fourth-order cumulants synthetic aperture linear array
下载PDF
Array-error estimation method for multi-channel SAR systems in azimuth 被引量:1
14
作者 Lun Ma Guisheng Liao +2 位作者 Aifei Liu Yanling Jiang Ling Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期815-821,共7页
For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consis... For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low. 展开更多
关键词 error estimation multi-channel synthetic aperture radar(SAR) system array signal processing
下载PDF
Sparse Bayesian learning in ISAR tomography imaging
15
作者 苏伍各 王宏强 +2 位作者 邓彬 王瑞君 秦玉亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1790-1800,共11页
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a... Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms. 展开更多
关键词 inverse synthetic aperture radar (ISAR) TOMOGRAPHY computer aided tomography (CT) imaging sparse recover compress sensing (CS) sparse Bayesian leaming (SBL)
下载PDF
ISAR target recognition based on non-negative sparse coding
16
作者 Ning Tang Xunzhang Gao Xiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期849-857,共9页
Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba... Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations. 展开更多
关键词 inverse synthetic aperture radar (ISAR) PRE-PROCESSING non-negative sparse coding (NNSC) visual percep-tion target recognition.
下载PDF
Exploration on 2D DOA Estimation of Linear Array Motion:Uniform Linear Motion
17
作者 Jianhong Chu Zhi Zhang Yu Guo 《China Communications》 SCIE CSCD 2023年第11期78-95,共18页
Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.I... Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction. 展开更多
关键词 2D DOA estimation linear array motion reduced complexity synthetic aperture
下载PDF
BEAM BROADENING SYNTHESIS FOR SAR ANTENNA ARRAY BASED ON PROJECTION MATRIX ALGORITHM
18
作者 Jiao Junjun Sun Huifeng 《Journal of Electronics(China)》 2014年第5期433-440,共8页
A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed ... A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed manner is improved to resolve the unbalance problem under amplitude and phase control. In order to validate the algorithm correct and effective, an actual engineering application example is investigated. The beam synthesis results of 1.0~4.5 times broadening under the phase only control and the amplitude and phase control using improved PMA are given. The results show that the beam directivity, the beam broadening, and the side-lobe level requirements were met. It is demonstrated that the improved PMA was effective and feasible for SAR application. 展开更多
关键词 synthetic aperture Radar(SAR) antenna array Beam broadening synthesis Projection Matrix Algorithm(PMA) Phase only control Amplitude and phase control
下载PDF
综合孔径微波辐射计的射频干扰源空间角度稀疏贝叶斯估计方法
19
作者 张娟 庄乐慧 +2 位作者 李一楠 李虹 窦昊锋 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3202-3209,共8页
该文提出一种综合孔径微波辐射计射频干扰源(RFI)空间稀疏贝叶斯估计方法。首先建立了综合孔径微波辐射计可见度函数干涉测量模型,观测数据表示为综合孔径天线基线对相关导向矢量观测矩阵与视场亮温的乘积,由于相关导向矢量观测矩阵的... 该文提出一种综合孔径微波辐射计射频干扰源(RFI)空间稀疏贝叶斯估计方法。首先建立了综合孔径微波辐射计可见度函数干涉测量模型,观测数据表示为综合孔径天线基线对相关导向矢量观测矩阵与视场亮温的乘积,由于相关导向矢量观测矩阵的正交性和RFI空间角度分布的稀疏性,亮温在基线对相关导向矢量观测矩阵正交基所构成的支撑域中的变换系数是稀疏的。该文在稀疏贝叶斯学习(SBL)框架下对亮温进行稀疏重构。该方法在无需稀疏度和正则化参数等先验信息前提下也能获得较高的重构性能。计算机仿真验证了该方法的有效性。 展开更多
关键词 综合孔径微波辐射计 射频干扰源 稀疏贝叶斯 空间角度估计
下载PDF
结合最近邻图模型的稀疏ISAR成像方法
20
作者 胡长雨 陈春风 +3 位作者 易文忆 董宇宸 李晖 汪玲 《电子学报》 EI CAS CSCD 北大核心 2024年第1期170-180,共11页
逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)稀疏成像方法可提供图像对比度高、旁瓣干扰少的成像结果 .稀疏成像以场景或目标散射率分布具有稀疏性为前提,待成像目标场景的稀疏特性决定了最终成像质量. ISAR目标场景的自然... 逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)稀疏成像方法可提供图像对比度高、旁瓣干扰少的成像结果 .稀疏成像以场景或目标散射率分布具有稀疏性为前提,待成像目标场景的稀疏特性决定了最终成像质量. ISAR目标场景的自然稀疏特性着重刻画点状特征,变换域稀疏表示可增强目标图像的纹理等通用特征.通过学习获得的稀疏变换字典,可自适应于待成像的ISAR目标场景,找到面向ISAR目标图像块的特有稀疏表示.但是,图像块的特有稀疏表示中忽略了待成像目标场景中目标的几何特征信息.最近邻图模型可建立给定数据的几何特征描述算子,刻画出给定数据的几何特征信息.本文利用最近邻图模型来刻画待成像目标场景中目标的几何特征信息,并映射到待成像目标场景的特有稀疏表示中;提出结合最近邻图模型的ISAR稀疏成像方法,用于不同类别实测ISAR数据成像.相比已有的ISAR稀疏成像方法,所提成像方法可获得目标轮廓更清晰的成像结果,成像所需时间平均减少10.4%. 展开更多
关键词 逆合成孔径雷达 稀疏成像 最近邻图模型 稀疏表示 字典学习
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部