期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
SAR imaging method based on coprime sampling and nested sparse sampling 被引量:3
1
作者 Hongyin Shi Baojing Jia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1222-1228,共7页
As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data tr... As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This paper concerns the coprime sampl which are proposed recently but ng and nested sparse sampling, have never been applied to real world for target detection, and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Finally, the influence of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR. 展开更多
关键词 synthetic aperture radar (SAR) imaging compressivesensing coprime sampling nested sparse sampling.
下载PDF
Traffic danger detection by visual attention model of sparse sampling
2
作者 夏利民 刘涛 谭论正 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3916-3924,共9页
A method to detect traffic dangers based on visual attention model of sparse sampling was proposed. The hemispherical sparse sampling model was used to decrease the amount of calculation which increases the detection ... A method to detect traffic dangers based on visual attention model of sparse sampling was proposed. The hemispherical sparse sampling model was used to decrease the amount of calculation which increases the detection speed. Bayesian probability model and Gaussian kernel function were applied to calculate the saliency of traffic videos. The method of multiscale saliency was used and the final saliency was the average of all scales, which increased the detection rates extraordinarily. The detection results of several typical traffic dangers show that the proposed method has higher detection rates and speed, which meets the requirement of real-time detection of traffic dangers. 展开更多
关键词 traffic dangers visual attention model sparse sampling Bayesian probability model multiscale saliency
下载PDF
Obtaining Prior Information for Ultrasonic Signal Reconstruction from FRI Sparse Sampling Data
3
作者 Shoupeng Song Yingjie Ni Yonghua Shao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第4期65-72,共8页
Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal samplin... Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal sampling rate and the quantity of sampling data.However,the pulse number of the signal must be known beforehand for the signal reconstruction procedure.The accuracy of this prior information directly affects the accuracy of the estimated parameters of the signal and influences the assessment of flaws,leading to a lower defect detection ratio.Although the pulse number can be pre-given by theoretical analysis,the process is still unable to assess actual complex random orientation defects.Therefore,this paper proposes a new method that uses singular value decomposition(SVD) for estimating the pulse number from sparse sampling data and avoids the shortcoming of providing the pulse number in advance for signal reconstruction.When the sparse sampling data have been acquired from the ultrasonic signal,these data are transformed to discrete Fourier coefficients.A Hankel matrix is then constructed from these coefficients,and SVD is performed on the matrix.The decomposition coefficients reserve the information of the pulse number.When the decomposition coefficients generated by noise according to noise level are removed,the number of the remaining decomposition coefficients is the signal pulse number.The feasibility of the proposed method was verified through simulation experiments.The applicability was tested in ultrasonic experiments by using sample flawed pipelines.Results from simulations and real experiments demonstrated the efficiency of this method. 展开更多
关键词 FRI ultrasonic signal sparse sampling signal reconstruction prior information
下载PDF
Finite rate of innovation sparse sampling for a binary frequency-coded ultrasonic signal
4
作者 Song Shoupeng Chen Yiqian +1 位作者 Xu Baowen Qiu Yue 《Journal of Southeast University(English Edition)》 EI CAS 2022年第1期27-35,共9页
To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse samplin... To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse sampling for an ultrasonic signal pulse is presented.Differences between the pulse and the coded ultrasonic signal are analyzed,and a response mathematical model of the coded ultrasonic signal is established.A time-domain transform algorithm,called the high-order moment method,is applied to obtain a pulse stream signal to assist BFC ultrasonic signal sparse sampling.A sampling of the output signal with a uniform interval is then performed after modulating the pulse stream signal by a sampling kernel.FRI-based sparse sampling is performed using a self-made circuit on an aluminum alloy sample.Experimental results show that the sampling rate reduces to 0.5 MHz,which is at least 12.8 MHz in the Nyquist sampling mode.The echo peak amplitude and the time of flight are estimated from the sparse sampling data with maximum errors of 9.324%and 0.031%,respectively.This research can provide a theoretical basis and practical application reference for reducing the sampling rate and data volume in coded ultrasonic testing. 展开更多
关键词 coded ultrasonic signal finite rate of innovation high-order moment sparse sampling circuit implementation
下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
5
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
Dynamic Global-Principal Component Analysis Sparse Representation for Distributed Compressive Video Sampling
6
作者 武明虎 陈瑞 +1 位作者 李然 周尚丽 《China Communications》 SCIE CSCD 2013年第5期20-29,共10页
Video reconstruction quality largely depends on the ability of employed sparse domain to adequately represent the underlying video in Distributed Compressed Video Sensing (DCVS). In this paper, we propose a novel dyna... Video reconstruction quality largely depends on the ability of employed sparse domain to adequately represent the underlying video in Distributed Compressed Video Sensing (DCVS). In this paper, we propose a novel dynamic global-Principal Component Analysis (PCA) sparse representation algorithm for video based on the sparse-land model and nonlocal similarity. First, grouping by matching is realized at the decoder from key frames that are previously recovered. Second, we apply PCA to each group (sub-dataset) to compute the principle components from which the sub-dictionary is constructed. Finally, the non-key frames are reconstructed from random measurement data using a Compressed Sensing (CS) reconstruction algorithm with sparse regularization. Experimental results show that our algorithm has a better performance compared with the DCT and K-SVD dictionaries. 展开更多
关键词 distributed video compressive sampling global-PCA sparse representation sparseland model non-local similarity
下载PDF
A Low-Cost Dual Energy CT System with Sparse Data 被引量:4
7
作者 Yuanyuan Liu Jianping Cheng +3 位作者 Li Zhang Yuxiang Xing Zhiqiang Chen Peng Zheng 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第2期184-194,共11页
Dual Energy CT (DECT) has recently gained significant research interest owing to its ability to discriminate materials, and hence is widely applied in the field of nuclear safety and security inspection. With the cu... Dual Energy CT (DECT) has recently gained significant research interest owing to its ability to discriminate materials, and hence is widely applied in the field of nuclear safety and security inspection. With the current technological developments, DECT can be typically realized by using two sets of detectors, one for detecting lower energy X-rays and another for detecting higher energy X-rays. This makes the imaging system expensive, limiting its practical implementation. In 2009, our group performed a preliminary study on a new low-cost system design, using only a complete data set for lower energy level and a sparse data set for the higher energy level. This could significantly reduce the cost of the system, as it contained much smaller number of detector elements. Reconstruction method is the key point of this system. In the present study, we further validated this system and proposed a robust method, involving three main steps: (1) estimation of the missing data iteratively with TV constraints; (2) use the reconstruction from the complete lower energy CT data set to form an initial estimation of the projection data for higher energy level; (3) use ordered views to accelerate the computation. Numerical simulations with different number of detector elements have also been examined. The results obtained in this study demonstrate that 1 + 14% CT data is sufficient enough to provide a rather good reconstruction of both the effective atomic number and electron density distributions of the scanned object, instead of 2 sets CT data. 展开更多
关键词 X-ray imaging dual energy CT system sparse samples RECONSTRUCTION material discriminationAR^TV
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部