期刊文献+
共找到748篇文章
< 1 2 38 >
每页显示 20 50 100
Compressive Sensing Approach in Multicarrier Sparsely Indexing Modulation Systems 被引量:1
1
作者 Mostafa Salah Osama A.Omer Usama S.Mohamed 《China Communications》 SCIE CSCD 2017年第11期151-166,共16页
recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarri... recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency. 展开更多
关键词 indexed modulation combinatorial modulation double sparsity critical sparsity sparsely indexed modulation OFDM-IM
下载PDF
Features of physiological status of aged people in sparsely circumpolar areas of Russia
2
作者 Elena Yu. Golubeva Raisa I. Danilova 《Health》 2012年第9期750-754,共5页
Stable growth of the elderly age group is observed in the population of circumpolar areas of Russia. In northern conditions chronic pathology facilitates activity restriction development, changing the habitual lifesty... Stable growth of the elderly age group is observed in the population of circumpolar areas of Russia. In northern conditions chronic pathology facilitates activity restriction development, changing the habitual lifestyle. Ageing process involves functional constraints of physical and mental activities, difficulties in doing everyday work. Aging changes of the nervous and respiratory systems are more characteristic of aged men and women living in the nursing home system of Russian urban circumpolar area. These changes are caused by worse psychological state, hypokinesia so there is a need in improving approaches in medical and social care services, in particular, introducing activating technologies and the micro-environment enhancement. 展开更多
关键词 sparsely Circumpolar Areas of RUSSIAN NORTH ELDERLY POPULATION PHYSIOLOGICAL Status
下载PDF
特征增强的Sparse Transformer目标跟踪算法
3
作者 张丽君 李建民 +1 位作者 侯文 王洁 《电光与控制》 CSCD 北大核心 2024年第5期18-23,共6页
针对Transformer的自注意力机制计算量大、容易被背景分心,导致有效信息抓取不足,从而降低跟踪性能的问题,提出特征增强的Sparse Transformer目标跟踪算法。基于孪生网络骨干进行特征提取;特征增强模块利用多尺度特征图生成的上下文信息... 针对Transformer的自注意力机制计算量大、容易被背景分心,导致有效信息抓取不足,从而降低跟踪性能的问题,提出特征增强的Sparse Transformer目标跟踪算法。基于孪生网络骨干进行特征提取;特征增强模块利用多尺度特征图生成的上下文信息,增强目标局部特征;利用Sparse Transformer的最相关特性生成目标聚焦特征,并嵌入位置编码提升跟踪定位的精度。提出的跟踪模型以端到端的方式进行训练,在OTB100,VOT2018和LaSOT等5个数据集上进行了大量实验,实验结果表明所提算法取得了较好的跟踪性能,实时跟踪速度为34帧/s。 展开更多
关键词 目标跟踪 注意力机制 TRANSFORMER Sparse Transformer
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
4
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
A Novel Clutter Suppression Algorithm for Low-Slow-Small Targets Detecting Based on Sparse Adaptive Filtering 被引量:1
5
作者 Zeqi Yang Shuai Ma +2 位作者 Ning Liu Kai Chang Xiaode Lyu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期54-64,共11页
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I... Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance. 展开更多
关键词 passive radar interference suppression sparse representation adaptive filtering
下载PDF
Monitoring seismicity in the southern Sichuan Basin using a machine learning workflow 被引量:1
6
作者 Kang Wang Jie Zhang +2 位作者 Ji Zhang Zhangyu Wang Huiyu Zhu 《Earthquake Research Advances》 CSCD 2024年第1期59-66,共8页
Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the sout... Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well. 展开更多
关键词 Earthquake monitoring Machine learning Local seismicity Gaussian waveform Sparse stations
下载PDF
高斯线性模型正则估计的Cramér-Rao下界
7
作者 蔡志鹏 孔令臣 《曲阜师范大学学报(自然科学版)》 CAS 2024年第2期35-45,共11页
该文针对正则化高斯模型中参数估计的Cramér-Rao下界(CRB)开展研究,提出了一种新型CRB.在线性高斯模型的设计矩阵单位正交的假设下,给出L_1类正则估计的方差及CRB的显式表达,并进行数值计算.进一步地,推导了正则估计的CRB取等条件... 该文针对正则化高斯模型中参数估计的Cramér-Rao下界(CRB)开展研究,提出了一种新型CRB.在线性高斯模型的设计矩阵单位正交的假设下,给出L_1类正则估计的方差及CRB的显式表达,并进行数值计算.进一步地,推导了正则估计的CRB取等条件:在线性高斯模型中,取得CRB的估计均为线性估计量;在正则项可微的假设下,仅二次多项式正则项可令估计取得CRB.最后,针对带稀疏特征的估计提出sparse CRB,将其与现有的CRB比较,从理论和实践两方面说明了其优势. 展开更多
关键词 Cramér-Rao下界 正则估计 sparse CRB
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
8
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
THE STABLE RECONSTRUCTION OF STRONGLY-DECAYING BLOCK SPARSE SIGNALS
9
作者 Yifang YANG Jinping WANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1787-1800,共14页
In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of t... In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp. 展开更多
关键词 compressed sensing strongly-decaying block sparse signal block generalized OMP block-RIP
下载PDF
Balance Sparse Decomposition Method with Nonconvex Regularization for Gearbox Fault Diagnosis
10
作者 Weiguo Huang Jun Wang +2 位作者 Guifu Du Shuyou Wu Zhongkui Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期258-271,共14页
As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gea... As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gearboxes.Gearbox fault signals usually contain multiple characteristic components and are accompanied by strong noise interference.Traditional sparse modeling methods are based on synthesis models,and there are few studies on analysis and balance models.In this paper,a balance nonconvex regularized sparse decomposition method is proposed,which based on a balance model and an arctangent nonconvex penalty function.The sparse dictionary is constructed by using Tunable Q-Factor Wavelet Transform(TQWT)that satisfies the tight frame condition,which can achieve efficient and fast solution.It is optimized and solved by alternating direction method of multipliers(ADMM)algorithm,and the non-convex regularized sparse decomposition algorithm of synthetic and analytical models are given.Through simulation experiments,the determination methods of regularization parameters and balance parameters are given,and compared with the L1 norm regularization sparse decomposition method under the three models.Simulation analysis and engineering experimental signal analysis verify the effectiveness and superiority of the proposed method. 展开更多
关键词 Gearbox fault diagnosis Balance model Sparse decomposition Non-convex regularization
下载PDF
Improved Variable Forgetting Factor Proportionate RLS Algorithm with Sparse Penalty and Fast Implementation Using DCD Iterations
11
作者 Han Zhen Zhang Fengrui +2 位作者 Zhang Yu Han Yanfeng Jiang Peng 《China Communications》 SCIE CSCD 2024年第10期16-27,共12页
The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms wit... The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm. 展开更多
关键词 dichotomous coordinate descent proportionate matrix RLS sparse systems variable forgetting factor
下载PDF
Connection-Free Transmission for Critical MTC
12
作者 Li Zhigang Yuan Zhifeng +1 位作者 Ma Yihua Liang Chulong 《China Communications》 SCIE CSCD 2024年第8期162-171,共10页
In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliabi... In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliability,we design multiple independent sparse orthogonal pilots(MISOP)to significantly reduce the probability of pilot collision to the order of 10^(−5).Besides,the advancements of massive MIMO(mMIMO)are exploited to further enhance the reliability.To achieve low latency,connection-free slot-based one-shot transmission without retransmissions is adopted.On the receiver side,single round of multi-user detection(MUD)without interference cancellation(IC)can reduce the processing delay.The imprecise synchronization between cMTC device and the gNB in connection-free transmission,e.g.,time and frequency offsets,are also considered.The simulation results shows that the proposed scheme can well satisfy the ambitious requirements of cMTC,and has the potential applications in supporting massive cMTC devices in 6G. 展开更多
关键词 connection-free critical MTC pilot collision sparse orthogonal pilot
下载PDF
Sparse Reconstructive Evidential Clustering for Multi-View Data
13
作者 Chaoyu Gong Yang You 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期459-473,共15页
Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, t... Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, these existing algorithms create only the hard and fuzzy partitions for multi-view objects,which are often located in highly-overlapping areas of multi-view feature space. The adoption of hard and fuzzy partition ignores the ambiguity and uncertainty in the assignment of objects, likely leading to performance degradation. To address these issues, we propose a novel sparse reconstructive multi-view evidential clustering algorithm(SRMVEC). Based on a sparse reconstructive procedure, SRMVEC learns a shared affinity matrix across views, and maps multi-view objects to a 2-dimensional humanreadable chart by calculating 2 newly defined mathematical metrics for each object. From this chart, users can detect the number of clusters and select several objects existing in the dataset as cluster centers. Then, SRMVEC derives a credal partition under the framework of evidence theory, improving the fault tolerance of clustering. Ablation studies show the benefits of adopting the sparse reconstructive procedure and evidence theory. Besides,SRMVEC delivers effectiveness on benchmark datasets by outperforming some state-of-the-art methods. 展开更多
关键词 Evidence theory multi-view clustering(MVC) optimization sparse reconstruction
下载PDF
Anomaly-Based Intrusion DetectionModel Using Deep Learning for IoT Networks
14
作者 Muaadh A.Alsoufi Maheyzah Md Siraj +4 位作者 Fuad A.Ghaleb Muna Al-Razgan Mahfoudh Saeed Al-Asaly Taha Alfakih Faisal Saeed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期823-845,共23页
The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly int... The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better. 展开更多
关键词 IOT anomaly intrusion detection deep learning sparse autoencoder convolutional neural network
下载PDF
一种基于迭代近端投影的被动声纳探测离网格DOA估计方法
15
作者 戴泽华 张亮 +1 位作者 韩笑 殷敬伟 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期417-424,共8页
Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach ofte... Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach often introduces errors into the sparse representation model,necessitating the development of improved DOA estimation algorithms.Moreover,conventional DOA estimation methods typically assume that the signal coincides with a predetermined grid.However,in reality,this assumption often does not hold true.The likelihood of a signal not aligning precisely with the predefined grid is high,resulting in potential grid mismatch issues for the algorithm.To address the challenges associated with grid mismatch and errors in sparse representation models,this article proposes a novel high-performance off-grid DOA estimation approach based on iterative proximal projection(IPP).In the proposed method,we employ an alternating optimization strategy to jointly estimate sparse signals and grid offset parameters.A proximal function optimization model is utilized to address non-convex and non-smooth sparse representation problems in DOA estimation.Subsequently,we leverage the smoothly clipped absolute deviation penalty(SCAD)function to compute the proximal operator for solving the model.Simulation and sea trial experiments have validated the superiority of the proposed method in terms of higher resolution and more accurate DOA estimation performance when compared to both traditional sparse reconstruction methods and advanced off-grid techniques. 展开更多
关键词 DOA estimation Sparse reconstruction Off-grid model Iterative proximal projection Passive sonar detection
下载PDF
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
16
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
下载PDF
2D DOA Estimation of Coherent Signals with a Separated Linear Acoustic Vector-Sensor Array
17
作者 Sheng Liu Jing Zhao +2 位作者 Decheng Wu Yiwang Huang Kaiwu Luo 《China Communications》 SCIE CSCD 2024年第2期155-165,共11页
In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spat... In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results. 展开更多
关键词 acoustic vector-sensor coherent signals extended signal subspace sparse array
下载PDF
基于吉布斯采样的稀疏水声信道估计方法
18
作者 佟文涛 葛威 +1 位作者 贾亦真 张嘉恒 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期434-442,共9页
The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived thro... The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived through the expectation maximization(EM)algorithm,has been widely employed for UWA channel estimation,it still differs from the real posterior expectation of channels.In this paper,we propose an approach that combines variational inference(VI)and Markov chain Monte Carlo(MCMC)methods to provide a more accurate posterior estimation.Specifically,the SBL is first re-derived with VI,allowing us to replace the posterior distribution of the hidden variables with a variational distribution.Then,we determine the full conditional probability distribution for each variable in the variational distribution and then iteratively perform random Gibbs sampling in MCMC to converge the Markov chain.The results of simulation and experiment indicate that our estimation method achieves lower mean square error and bit error rate compared to the classic SBL approach.Additionally,it demonstrates an acceptable convergence speed. 展开更多
关键词 Sparse bayesian learning Channel estimation Variational inference Gibbs sampling
下载PDF
THE SPARSE REPRESENTATION RELATED WITH FRACTIONAL HEAT EQUATIONS
19
作者 曲伟 钱涛 +1 位作者 梁应德 李澎涛 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期567-582,共16页
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an... This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions. 展开更多
关键词 reproducing kernel Hilbert space DICTIONARY sparse representation approximation to the identity fractional heat equations
下载PDF
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
20
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization Alternating direction method of multipliers Proximal operators
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部