Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- t...Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.展开更多
Production of copper powders by the potentiostatic electrolysis under different hydrogen evolution conditions was investigated. Copper powders were characterized by the scanning electron microscope(SEM),X-ray diffract...Production of copper powders by the potentiostatic electrolysis under different hydrogen evolution conditions was investigated. Copper powders were characterized by the scanning electron microscope(SEM),X-ray diffraction(XRD),particle size distribution(PSD), and by the determination of the specific surface area(SSA) of the formed powders. Depending on quantity of hydrogen generated during electrolysis, the two types of particles were formed: dendrites and cauliflower-like particles. The dendrites were formed without, while cauliflower-like particles with the quantity of evolved hydrogen enough to achieve strong effect on hydrodynamic conditions in the near-electrode layer. Although macro structure of the particles was very different, they showed similar micro structure. Namely, both types of the particles consisted of smalal agglomerates of approximately spherical Cu grains at the micro level. The existence of the spherical morphology was just responsible for random orientation of Cu crystallites in both types of particles. The SSA of cauliflower-like particles was more than two times larger than that of the dendrites, while their size was considerably smaller than that of the dendritic particles. In this way, the useful benefit of Cu powder formation in the conditions of vigorous hydrogen evolution is shown.展开更多
Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of th...Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges(i.e. 〉 10, 1-10, 0.5-1, 0.2-0.5 and 〈 0.2 μm) for a purple soil(Entisol) and a yellow soil(Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction.We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles(〈 1 μm), and almost half of the specific surface area and surface charge came from the smallest particles(〈 0.2 μm). Vermiculite,illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy.Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the 〈 0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties.展开更多
文摘Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.
基金supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under the research project: “Electrochemical Synthesis and Characterization of Nanostructured Functional Materials for Application in New Technologies” (Project No. 172046)
文摘Production of copper powders by the potentiostatic electrolysis under different hydrogen evolution conditions was investigated. Copper powders were characterized by the scanning electron microscope(SEM),X-ray diffraction(XRD),particle size distribution(PSD), and by the determination of the specific surface area(SSA) of the formed powders. Depending on quantity of hydrogen generated during electrolysis, the two types of particles were formed: dendrites and cauliflower-like particles. The dendrites were formed without, while cauliflower-like particles with the quantity of evolved hydrogen enough to achieve strong effect on hydrodynamic conditions in the near-electrode layer. Although macro structure of the particles was very different, they showed similar micro structure. Namely, both types of the particles consisted of smalal agglomerates of approximately spherical Cu grains at the micro level. The existence of the spherical morphology was just responsible for random orientation of Cu crystallites in both types of particles. The SSA of cauliflower-like particles was more than two times larger than that of the dendrites, while their size was considerably smaller than that of the dendritic particles. In this way, the useful benefit of Cu powder formation in the conditions of vigorous hydrogen evolution is shown.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07104-003)the Natural Science Foundation Project of CQ CSTC (No. CSTC, 2011BA7001)the National Natural Science Foundation of China (No. 40971146)
文摘Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges(i.e. 〉 10, 1-10, 0.5-1, 0.2-0.5 and 〈 0.2 μm) for a purple soil(Entisol) and a yellow soil(Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction.We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles(〈 1 μm), and almost half of the specific surface area and surface charge came from the smallest particles(〈 0.2 μm). Vermiculite,illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy.Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the 〈 0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties.