期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Quantitative method for calculating spatial release region for laser-guided bomb
1
作者 YANG Ping XIAO Bing +1 位作者 CHEN Xin HAO Yuntao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1053-1062,共10页
The laser-guided bomb(LGB)is an air-to-ground pre-cision-guided weapon that offers high hit rates,great power,and ease of use.LGBs are guided by semi-active laser ground-seek-ing technology,which means that atmospheri... The laser-guided bomb(LGB)is an air-to-ground pre-cision-guided weapon that offers high hit rates,great power,and ease of use.LGBs are guided by semi-active laser ground-seek-ing technology,which means that atmospheric conditions can affect their accuracy.The spatial release region(SRR)of LGBs is difficult to calculate precisely,especially when there is a poor field of view.This can result in a lower real hit probability.To increase the hit probability of LGBs in tough atmospheric situa-tions,a novel method for calculating the SRR has been pro-posed.This method is based on the transmittance model of the 1.06μm laser in atmospheric species and the laser diffuse reflection model of the target surface to determine the capture target time of the laser seeker.Then,it calculates the boundary ballistic space starting position by ballistic model and gets the spatial scope of the spatial release region.This method can determine the release region of LGBs based on flight test data such as instantaneous velocity,altitude,off-axis angle,and atmospheric visibility.By more effectively employing aircraft release conditions,atmospheric visibility and other factors,the SRR calculation method can improve LGB hit probabi-lity by 9.2%. 展开更多
关键词 laser-guided bombs(LGBs) hit probability atmo-spheric transmittance spatial release region(SRR)boundary ballistic
下载PDF
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:1
2
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
下载PDF
A climatological northern boundary index for the East Asian summer monsoon and its interannual variability 被引量:17
3
作者 CHEN Jie HUANG Wei +3 位作者 JIN LiYa CHEN JianHui CHEN ShengQian CHEN FaHu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第1期13-22,共10页
A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for p... A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day^(-1) precipitation isoline(i.e., 300 mm precipitation)has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day^(-1) isoline has a clear physical significance since the climatic, ecological,and geographical boundary can be used as the northern boundary index of the EASM(which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological(1981-2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200-700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions. 展开更多
关键词 East Asian summer monsoon Climatological northern boundary index Interannual change spatial fluctuations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部