Digital financial inclusion(DFI)has the advantage of promoting information sharing,reducing transaction costs,and providing microloan platforms for small and medium-sized enterprises.It has also made outstanding contr...Digital financial inclusion(DFI)has the advantage of promoting information sharing,reducing transaction costs,and providing microloan platforms for small and medium-sized enterprises.It has also made outstanding contributions to decreasing CO_(2) emissions.However,the volatility correlation between DFI and CO_(2) emissions is still relatively unexplored.This research uses the spatial autoregressive process with conditional heteroscedastic errors(SARspARCH)model to evaluate the spatial fluctuation spillover impacts of DFI on CO_(2) emissions in 284 Chinese cities covering the period 2011-2016 following the IPAT model.The results indicate that CO_(2) emissions have significant spatial spillover and volatility effects.The fitted value of SARspARCH estimation results is more realistic than the SAR and spARCH model.DFI alleviates average CO_(2) emissions in Chinese cities.Moreover,spatial volatility weakens the negative influence of DFI on average carbon emissions.This study provides insights from which governments can strengthen inter-regional communication and synergistic emission-reduction capabilities,and promote the digitization of the financial sector to achieve carbon neutrality goals.展开更多
A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performa...A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performance dependent spatially correlated fluctuation in a DQD photocell. The effects of spatially correlated fluctuation on charge transfer and output photovoltaic efficiency were explored in a proposed DQD photocell model. The results revealed that the charge transport process and the time to peak photovoltaic efficiency were both significantly delayed by the spatially correlated fluctuation, while the anti-spatially correlated fluctuation reduced the output peak photovoltaic efficiency. Further results revealed that the delayed response could be suppressed by gap difference and tunneling coefficient within two dots. Subsequent investigation demonstrated that the delayed response was caused by the spatial correlation fluctuation slowing the generative process of noise-induced coherence, which had previously been proven to improve the quantum photovoltaic performance in quantum photocells. And the reduced photovoltaic properties were verified by the damaged noise-induced coherence owing to the anti-spatial correlation fluctuation and a hotter thermal ambient environment. The discovery of delayed response generated by the spatially correlated fluctuations will deepen the understanding of quantum features of electron transfer, as well as promises to take our understanding even further concerning quantum techniques for high efficiency DQD solar cells.展开更多
The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conv...The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.展开更多
A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for p...A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day^(-1) precipitation isoline(i.e., 300 mm precipitation)has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day^(-1) isoline has a clear physical significance since the climatic, ecological,and geographical boundary can be used as the northern boundary index of the EASM(which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological(1981-2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200-700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions.展开更多
基金supported by the National Social Science Foundation of China(Grant No.20VGQ003)the Natural Science Fund of Hunan Province(2022JJ40647).
文摘Digital financial inclusion(DFI)has the advantage of promoting information sharing,reducing transaction costs,and providing microloan platforms for small and medium-sized enterprises.It has also made outstanding contributions to decreasing CO_(2) emissions.However,the volatility correlation between DFI and CO_(2) emissions is still relatively unexplored.This research uses the spatial autoregressive process with conditional heteroscedastic errors(SARspARCH)model to evaluate the spatial fluctuation spillover impacts of DFI on CO_(2) emissions in 284 Chinese cities covering the period 2011-2016 following the IPAT model.The results indicate that CO_(2) emissions have significant spatial spillover and volatility effects.The fitted value of SARspARCH estimation results is more realistic than the SAR and spARCH model.DFI alleviates average CO_(2) emissions in Chinese cities.Moreover,spatial volatility weakens the negative influence of DFI on average carbon emissions.This study provides insights from which governments can strengthen inter-regional communication and synergistic emission-reduction capabilities,and promote the digitization of the financial sector to achieve carbon neutrality goals.
基金the National Natural Science Foundation of China (Grant Nos. 62065009 and 61565008)Yunnan Fundamental Research Projects, China (Grant No. 2016FB009)。
文摘A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performance dependent spatially correlated fluctuation in a DQD photocell. The effects of spatially correlated fluctuation on charge transfer and output photovoltaic efficiency were explored in a proposed DQD photocell model. The results revealed that the charge transport process and the time to peak photovoltaic efficiency were both significantly delayed by the spatially correlated fluctuation, while the anti-spatially correlated fluctuation reduced the output peak photovoltaic efficiency. Further results revealed that the delayed response could be suppressed by gap difference and tunneling coefficient within two dots. Subsequent investigation demonstrated that the delayed response was caused by the spatial correlation fluctuation slowing the generative process of noise-induced coherence, which had previously been proven to improve the quantum photovoltaic performance in quantum photocells. And the reduced photovoltaic properties were verified by the damaged noise-induced coherence owing to the anti-spatial correlation fluctuation and a hotter thermal ambient environment. The discovery of delayed response generated by the spatially correlated fluctuations will deepen the understanding of quantum features of electron transfer, as well as promises to take our understanding even further concerning quantum techniques for high efficiency DQD solar cells.
文摘The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC3101300)the innovation project of Innovative Academy of Marine Information Technology,Chinese Academy of Sciences (Grant No.CXBS202101)+2 种基金the National Natural Science Foundation of China (Grant Nos.41876022,12372216,41630970,and 41806033)the Science,Technology and Innovation Commission of Shenzhen Municipality (Grant No.GXWD20220818113020001)the Science and Technology Program of Guangzhou (Grant No.202102020707).
基金supported by the National Natural Science Foundation of China (Grant Nos. 41505043 & 41372180)
文摘A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon(EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day^(-1) precipitation isoline(i.e., 300 mm precipitation)has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day^(-1) isoline has a clear physical significance since the climatic, ecological,and geographical boundary can be used as the northern boundary index of the EASM(which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological(1981-2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200-700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions.