期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
1
作者 Ruozhong Han Yuchan Zhang +6 位作者 Qilin Jiang Long Chen Kaiqiang Cao Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Science》 2024年第3期33-46,共14页
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t... Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL. 展开更多
关键词 laser-induced periodic surface structures(LIPSS) local field enhancement collinear pump-probe imaging silicon high spatial frequency periodic structures
下载PDF
An operational modal analysis method in frequency and spatial domain 被引量:9
2
作者 王彤 张令弥 田村幸雄 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期295-300,共6页
A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experime... A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified, Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method. 展开更多
关键词 operational modal analysis modal parameters identification frequency and spatial domain
下载PDF
Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
3
作者 刘璠 刘雪峰 +4 位作者 蓝若明 姚旭日 窦申成 王小庆 翟光杰 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期275-282,共8页
Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency d... Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency domain. Theoretical analysis and simulation show the relation between the measurement matrix resolution and compressive sensing(CS)imaging quality. The matrix design is improved to provide multi-scale modulations, followed by individual reconstruction of images of different spatial frequencies. Compared with traditional single-scale CS imaging, the multi-scale method provides high quality imaging in both high and low frequencies, and effectively decreases the overall reconstruction error.Experimental results confirm the feasibility of this technique, especially at low sampling rate. The method may thus be helpful in promoting the implementation of compressive imaging in real applications. 展开更多
关键词 compressed sensing imaging quality spatial frequency domain multi-scale modulation
下载PDF
Combined spatial frequency spectroscopy analysis with visible resonance Raman for optical biopsy of human brain metastases of lung cancers
4
作者 Yan Zhou Cheng-Hui Liu +8 位作者 Yang Pu Binlin Wu Thien An Nguyen Gangge Cheng Lixin Zhou Ke Zhu Jun Chen Qingbo Li Robert R.Alfano 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第2期93-104,共12页
The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of l... The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of lung cancers adenocarcinoma(ADC)and squamous cell carcinoma(SCC)from normal tissues.A total of 31 label-free micrographic images of three type of brain tissues were obtained using a confocal micro-Raman spectroscopic system.VRR spectra of the corresponding samples were synchronously collected using excitation wavelength of 532 nm from the same sites of the tissues.Using SFSA method,the difference in the randomness of spatial frequency structures in the micrograph images was analyzed using Gaussian functionfitting.The standard deviations,calculated from the spatial frequencies of the micrograph images were then analyzed using support vector machine(SVM)classifier.The key VRR biomolecularfingerprints of carotenoids,tryptophan,amide II,lipids and proteins(methylene/methyl groups)were also analyzed using SVM classifier.All three types of brain tissues were identified with high accuracy in the two approaches with high correlation.The results show that SFSA–VRR can potentially be a dual-modal method to provide new criteria for identifying the three types of human brain tissues,which are on-site,real-time and label-free and may improve the accuracy of brain biopsy. 展开更多
关键词 spatial frequency spectroscopy analysis(SFSA) visible resonance Raman(VRR) human brain metastatic lung cancer photomicrograph image support vector machine(SVM)
下载PDF
Ghost imaging based on the control of light source bandwidth
5
作者 刘兆骐 白艳锋 +3 位作者 邹璇彭凡 周立宇 付芹 傅喜泉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期276-279,共4页
A scheme to improve the quality in ghost imaging(GI)by controlling the bandwidth of light source(BCGI)is proposed.The theoretical and numerical results show that the reconstruction result with high quality can be obta... A scheme to improve the quality in ghost imaging(GI)by controlling the bandwidth of light source(BCGI)is proposed.The theoretical and numerical results show that the reconstruction result with high quality can be obtained by adjusting the bandwidth range of the light source appropriately,and the selection criterion of the bandwidth is analyzed by the power distribution of the imaging target.A proof-of-principle experiment is implemented to verify the theoretical and numerical results.In addition,the BCGI also presents better anti-noise performance when compared with some popular GI methods. 展开更多
关键词 ghost imaging light source property spatial frequency domain
下载PDF
high-power laser;off-axis reflective exposure system;pulse compression grating;spatial frequency errors;specifications
6
作者 Chen Hu Songlin Wan +8 位作者 Guochang Jiang Haojin Gu Yibin Zhang Yunxia Jin Shijie Liu Chenqiang Zhao Hongchao Cao Chaoyang Wei Jianda Shao 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2024年第1期1-12,共12页
The large-aperture pulse compression grating(PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser;however, the size of the PCG manufactured by transmission holographic exposure i... The large-aperture pulse compression grating(PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser;however, the size of the PCG manufactured by transmission holographic exposure is limited to large-scale high-quality materials. The reflective method is a potential way for solving the size limitation, but there is still no successful precedent due to the lack of scientific specifications and advanced processing technology of exposure mirrors. In this paper, an analytical model is developed to clarify the specifications of components, and advanced processing technology is adopted to control the spatial frequency errors. Hereafter, we have successfully fabricated a multilayer dielectric grating of 200 mm × 150 mm by using an off-axis reflective exposure system with Φ300 mm. This demonstration proves that PCGs can be manufactured by using the reflection holographic exposure method and shows the potential for manufacturing the meter-level gratings used in 100 petawatt class high-power lasers. 展开更多
关键词 high-power laser off-axis reflective exposure system pulse compression grating spatial frequency errors SPECIFICATIONS
原文传递
Visual response characteristics of neurons in the second visual area of marmosets
7
作者 Yin Yang Ke Chen +3 位作者 Marcello G.P.Rosa Hsin-Hao Yu Li-Rong Kuang Jie Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第9期1871-1876,共6页
The physiological characteristics of the marmoset second visual area(V2) are poorly understood compared with those of the primary visual area(V1). In this study, we observed the physiological response characteristics ... The physiological characteristics of the marmoset second visual area(V2) are poorly understood compared with those of the primary visual area(V1). In this study, we observed the physiological response characteristics of V2 neurons in four healthy adult marmosets using intracortical tungsten microelectrodes. We recorded 110 neurons in area V2, with receptive fields located between 8° and 15° eccentricity. Most(88.2%) of these neurons were orientation selective, with half-bandwidths typically ranging between 10° and 30°. A significant proportion of neurons(28.2%) with direction selectivity had a direction index greater than 0.5. The vast majority of V2 neurons had separable spatial frequency and temporal frequency curves and, according to this criterion, they were not speed selective. The basic functional response characteristics of neurons in area V2 resemble those found in area V1. Our findings show that area V2 together with V1 are important in primate visual processing, especially in locating objects in space and in detecting an object's direction of motion. The methods used in this study were approved by the Monash University Animal Ethics Committee, Australia(MARP 2009-2011) in 2009. 展开更多
关键词 direction selectivity electrophysiological recording MARMOSET orientation selectivity receptive field second visual area spatial frequency speed selectivity temporal frequency
下载PDF
Three-dimensional quantication of protoporphyrin IX in photodynamic therapy using SFDI/DFT:A pilot experimental validation
8
作者 Mai Dan Weijie Song +2 位作者 Meihui Liu Yaru Zhang Feng Gao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第6期30-39,共10页
Photodynamic therapy(PDT)dosimetry,induding light dose,photosensitizer dose and tissue oxygen,has been a research focus in PDT.In this work,we present a three-dimensional(3D)quantification of protoporphyrin X(PpIX)usi... Photodynamic therapy(PDT)dosimetry,induding light dose,photosensitizer dose and tissue oxygen,has been a research focus in PDT.In this work,we present a three-dimensional(3D)quantification of protoporphyrin X(PpIX)using combined spatial frequency domain imaging(SFDI)and diffuse fuorescence tomography(DFT).The SFDI maps both the distributions of tissue absorption and scattering properties at three wavelengths and accordingly provides the optical background for DFT and extracts the tissue oxygenation for assessing the therapeutic outcomes,while DFT dynamically monitors the 3D distribution of PpEX dose from measured fluorescence signals for the procedure optimization.A pilot in vrivo application in tumor nude models showed that the proposed SFDI/DFT is able to dynamically trace changes in the PpX concentration and tissue oaxygen during the treatment,rendering it a potentially powerful tool for PDT to improve clinical eficacy. 展开更多
关键词 Photodynamic therapy spatial frequency domain imaging difuse fuorescence tomography
下载PDF
A two-mode squeezed light based on a double-pump phase-matching geometry
9
作者 何烜坚 贾俊 +3 位作者 高锋 陈丽清 袁春华 张卫平 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期337-345,共9页
We theoretically investigate the frequency-nondegenerate and frequency degenerate squeezed lights with a four-wave mixing process(4WM)driven by two pump fields crossing at a small angle.Different from a 4WM process dr... We theoretically investigate the frequency-nondegenerate and frequency degenerate squeezed lights with a four-wave mixing process(4WM)driven by two pump fields crossing at a small angle.Different from a 4WM process driven by a single pump field,the refractive index of the corresponding probe field,np,can be converted to a value that is greater than 1 or less than 1 by an angle adjustment.In the new region with np<1,the bandwidth of the gain is relatively large due to the slow change in the refractive index with the two-photon detuning.In this region with an exchange of the roles of the pump and probe beams,the frequency degenerate and spatial nondegenerate twin beams can be generated,which has potential application in quantum information and quantum metrology. 展开更多
关键词 four-wave mixing phase matching frequency degenerate and spatial nondegenerate METROLOGY
下载PDF
Soft Computing Based Discriminator Model for Glaucoma Diagnosis
10
作者 Anisha Rebinth S.Mohan Kumar 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期867-880,共14页
In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD)using soft computing techniques is presented. As the biomedical images such asfundus images are often acquired in high resolution, the Region of Intere... In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD)using soft computing techniques is presented. As the biomedical images such asfundus images are often acquired in high resolution, the Region of Interest (ROI)for glaucoma diagnosis must be selected at first to reduce the complexity of anysystem. The DMGD system uses a series of pre-processing;initial cropping by thegreen channel’s intensity, Spatially Weighted Fuzzy C Means (SWFCM), bloodvessel detection and removal by Gaussian Derivative Filters (GDF) and inpaintingalgorithms. Once the ROI has been selected, the numerical features such as colour, spatial domain features from Local Binary Pattern (LBP) and frequencydomain features from LAWS are generated from the corresponding ROI forfurther classification using kernel based Support Vector Machine (SVM). TheDMGD system performances are validated using four fundus image databases;ORIGA, RIM-ONE, DRISHTI-GS1, and HRF with four different kernels;LinearKernel (LK), Polynomial Kernel (PK), Radial Basis Function (RBFK) kernel,Quadratic Kernel (QK) based SVM classifiers. Results show that the DMGD system classifies the fundus images accurately using the multiple features and kernelbased classifies from the properly segmented ROI. 展开更多
关键词 GLAUCOMA support vector classification clustering technique spatial domain and frequency domain features
下载PDF
Two Concepts in Optics of Anisotropic Dispersive Media and Polariton Case in Coordinate-Invariant Way
11
作者 Alfred Wünsche 《Journal of Modern Physics》 2022年第4期574-619,共46页
Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic me... Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic media with material tensors for electric and magnetic induction which only depend on the frequency. The general algebraic form of the polarization vectors for the electric field and their one-dimensional projection operators is discussed without the degenerate cases of optic axis for which they become two-dimensional projection operators. Group velocity and diffraction coefficients in an approximate equation for the slowly varying amplitudes of beam solutions are calculated. As special case a polariton permittivity for isotropic media with frequency dispersion but without losses is discussed for the usual passive case and for the active case (occupation inversion of two energy levels that goes in direction of laser theory) and the group velocity is calculated. For this active case, regions of frequency and wave vector with group velocities greater than that of light in vacuum were found. This is not fully understood and due to large diffraction is likely only to realize in guided resonator form. The notion of “negative refraction” is shortly discussed but we did not find agreement with its assessment in the original paper. 展开更多
关键词 spatial and Frequency Dispersion Bi-Anisotropic Media Uniaxial Media Passive and Active Media Negative Refraction Operator Invariants Complementary Operator Group Velocity
下载PDF
Sample indexed spatial orthogonal frequency division multiplexing 被引量:1
12
作者 Pankil Butala Hany Elgala Thomas D.C.Little 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第9期10-14,共5页
Optical spatial modulation (OSM) is a multiple-transmitter technique that can provide higher data rates with low system complexity as compared with single-input single-output systems. Orthogonal frequency division m... Optical spatial modulation (OSM) is a multiple-transmitter technique that can provide higher data rates with low system complexity as compared with single-input single-output systems. Orthogonal frequency division multiplexing (OFDM) is widely implemented to achieve better spectral efficiency in wireless channels. Asymmetrically clipped optical OFDM (O-OFDM) and DC-biased O-OFDM are two well-known O-OFDM techniques suitable for intensity-modulation direct-detection optical systems. In this work, sample indexed spatial OFDM (SIS-OFDM) is proposed to combine OSM and O-OFDM in a novel way and achieve significant per- formance gain. By assigning time-domain samples of the O-OFDM transmit symbol to different transmitters, SIS-OFDM achieves much better spectral efficiency and reduces computational complexity at the transmitter as compared with previous work that combines OSM with O-OFDM in the frequency domain. We also consider the impact of optical source biasing on overall performance, and the relative performance of imaging receiver (ImR) versus non-imaging receiver (NImR) design for our proposed SIS-OFDM technique. Results indicate that for an Ntx x Nrx multiple-input multiple-output configuration where Nix = N = 4, SIS-OFDM using ImR can achieve up to 135 dB of signal-to-noise ratio gain over comparable system using a NImR. Also, using Nc number of O-OFDM subcarriers provides up to Nsc × log2(Ntx) additional bits per symbol of spectral efficiency over technioues that combine OSM and O-OFDM in the freollencv domain. 展开更多
关键词 OFDM SIS DCO Sample indexed spatial orthogonal frequency division multiplexing
原文传递
Resolution beyond classical limits with spatial frequency heterodyning 被引量:2
13
作者 A.Mudassar A.R.Harvey +1 位作者 A.H.Greenaway J.D.C.Jones 《Chinese Optics Letters》 SCIE EI CAS CSCD 2006年第3期148-151,共4页
A technique for coherent imaging based on spatial frequency heterodyning is described. Three images corresponding to three physical measurements are recorded. For the first measurement, a scene is simply illuminated w... A technique for coherent imaging based on spatial frequency heterodyning is described. Three images corresponding to three physical measurements are recorded. For the first measurement, a scene is simply illuminated with a coherent beam and for measurements 2 and 3, the scene is projected with cosine and sine fringes, respectively. Due to spatial frequency heterodyning, upper and lower side hand information falls in the pass band of the imager. These bands are separated and correct phases and positions are assigned to these bands in the spatial frequency domain. An extension of bandwidth is achieved in the frequency domain and the inverse frequency domain data then give a high resolution coherent image. 展开更多
关键词 Resolution beyond classical limits with spatial frequency heterodyning
原文传递
High Spatial Resolution and High Temporal Frequency(30-m/15-day) Fractional Vegetation Cover Estimation over China Using Multiple Remote Sensing Datasets:Method Development and Validation 被引量:3
14
作者 Xihan MU Tian ZHAO +8 位作者 Gaiyan RUAN Jinling SONG Jindi WANG Guangjian YAN Tim RMCVICAR Kai YAN Zhan GAO Yaokai LIU Yuanyuan WANG 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期128-147,共20页
High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estima... High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estimate FVC at a 30-m/15-day resolution over China by taking advantage of the spatial and temporal information from different types of sensors: the 30-m resolution sensor on the Chinese environment satellite(HJ-1) and the 1-km Moderate Resolution Imaging Spectroradiometer(MODIS). The algorithm was implemented for each main vegetation class and each land cover type over China. First, the high spatial resolution and high temporal frequency normalized difference vegetation index(NDVI) was acquired by using the continuous correction(CC) data assimilation method. Then, FVC was generated with a nonlinear pixel unmixing model. Model coefficients were obtained by statistical analysis of the MODIS NDVI. The proposed method was evaluated based on in situ FVC measurements and a global FVC product(GEOV1 FVC). Direct validation using in situ measurements at 97 sampling plots per half month in 2010 showed that the annual mean errors(MEs) of forest, cropland, and grassland were-0.025, 0.133, and 0.160, respectively, indicating that the FVCs derived from the proposed algorithm were consistent with ground measurements [R2 = 0.809,root-mean-square deviation(RMSD) = 0.065]. An intercomparison between the proposed FVC and GEOV1 FVC demonstrated that the two products had good spatial–temporal consistency and similar magnitude(RMSD approximates 0.1). Overall, the approach provides a new operational way to estimate high spatial resolution and high temporal frequency FVC from multiple remote sensing datasets. 展开更多
关键词 fractional vegetation cover(FVC) high spatial resolution and high temporal frequency data fusion normalized difference vegetation index(NDVI) pixel unmixing model multiple remote sensing datasets
原文传递
Image Fusion Using Wavelet Transformation and XGboost Algorithm
15
作者 Shahid Naseem Tariq Mahmood +4 位作者 Amjad Rehman Khan Umer Farooq Samra Nawazish Faten S.Alamri Tanzila Saba 《Computers, Materials & Continua》 SCIE EI 2024年第4期801-817,共17页
Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful ... Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful compared to the original input images,image fusion merges two or more initial images of the same item.Image fusion aims to produce,enhance,and transform significant elements of the source images into combined images for the sake of human visual perception.Image fusion is commonly employed for feature extraction in smart robots,clinical imaging,audiovisual camera integration,manufacturing process monitoring,electronic circuit design,advanced device diagnostics,and intelligent assembly line robots,with image quality varying depending on application.The research paper presents various methods for merging images in spatial and frequency domains,including a blend of stable and curvelet transformations,everageMax-Min,weighted principal component analysis(PCA),HIS(Hue,Intensity,Saturation),wavelet transform,discrete cosine transform(DCT),dual-tree Complex Wavelet Transform(CWT),and multiple wavelet transform.Image fusion methods integrate data from several source images of an identical target,thereby enhancing information in an extremely efficient manner.More precisely,in imaging techniques,the depth of field constraint precludes images from focusing on every object,leading to the exclusion of certain characteristics.To tackle thess challanges,a very efficient multi-focus wavelet decomposition and recompositionmethod is proposed.The use of these wavelet decomposition and recomposition techniques enables this method to make use of existing optimized wavelet code and filter choice.The simulated outcomes provide evidence that the suggested approach initially extracts particular characteristics from images in order to accurately reflect the level of clarity portrayed in the original images.This study enhances the performance of the eXtreme Gradient Boosting(XGBoost)algorithm in detecting brain malignancies with greater precision through the integration of computational image analysis and feature selection.The performance of images is improved by segmenting them employing the K-Means algorithm.The segmentation method aids in identifying specific regions of interest,using Particle Swarm Optimization(PCA)for trait selection and XGBoost for data classification.Extensive trials confirm the model’s exceptional visual performance,achieving an accuracy of up to 97.067%and providing good objective indicators. 展开更多
关键词 Image fusion max-min average CWT XGBoost DCT inclusive innovations spatial and frequency domain
下载PDF
Chip-compatible wide-field 3D nanoscopy through tunable spatial frequency shift effect
16
作者 Xiaowei Liu Mingwei Tang +6 位作者 Chao Meng Chenlei Pang Cuifang Kuang Wei Chen Clemens F.Kaminski Qing Yang Xu Liu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第9期41-50,共10页
Spatial frequency shift(SFS) microscopy with evanescent wave illumination shows intriguing advantages, including large field of view(FOV), high speed, and good modularity. However, a missing band in the spatial freque... Spatial frequency shift(SFS) microscopy with evanescent wave illumination shows intriguing advantages, including large field of view(FOV), high speed, and good modularity. However, a missing band in the spatial frequency domain hampers the SFS superresolution microscopy from achieving resolution better than 3 folds of the Abbe diffraction limit. Here, we propose a novel tunable large-SFS microscopy, making the resolution improvement of a linear system no longer restricted by the detection numerical aperture(NA). The complete wide-range detection in the spatial frequency domain is realized by tuning the illumination spatial frequency actively and broadly through an angle modulation between the azimuthal propagating directions of two evanescent waves. The vertical spatial frequency is tuned via a sectional saturation effect, and the reconstructed depth information can be added to the lateral superresolution mask for 3D imaging. A lateral resolution of λ/9, and a vertical localization precision of ~λ/200(detection objective NA = 0.9) are realized with a gallium phosphide(GaP) waveguide. Its unlimited resolution enhancing capability is demonstrated by introducing a designed metamaterial chip with an unusual large refractive index. Besides the great resolution enhancement, this method shows better anti-noise capability than classical structured illumination microscopy without SFS tunability. This method is chip-compatible and can potentially provide a massproducible illumination chip module achieving the fast, large-FOV, and deep-subwavelength 3D nanoscopy. 展开更多
关键词 superresolution spatial frequency shift evanescent wave wide-field microscopy chip-compatible microscopy
原文传递
A spatial frequency/spectral indicator-driven model for estimating cultivated land quality using the gradient boosting decision tree and genetic algorithm-back propagation neural network
17
作者 Ziqing Xia Yiping Peng +3 位作者 Chenjie Lin Ya Wen Huiming Liu Zhenhua Liu 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第4期635-648,共14页
Cultivated land quality(CLQ)is related to national food security.Rapid and high-precision monitoring of CLQ is crucial for the sustainable development of agriculture.However,current satellite image-based evaluation me... Cultivated land quality(CLQ)is related to national food security.Rapid and high-precision monitoring of CLQ is crucial for the sustainable development of agriculture.However,current satellite image-based evaluation methods that only consider the crop's spatial spectrum characteristics in the key growth stages cannot accurately estimate CLQ.This study proposes a new method based on time-series spectral data of crop growth to improve the accuracy of CLQ estimation.This study was conducted in the Conghua District of Guangzhou,Guangdong Province,China.The results showed that seven spectral indicators were determined as the optimal indicators based on the gradient boosting decision tree(GBDT)and variance inflation factor(VIF).And the genetic algorithm-back propagation neural network(GA-BPNN)model provided more accurate CLQ estimates than the partial least squares regression(PLSR)model,indicating a nonlinear relationship between CLQ and the indicators.In addition,the GA-BPNN model with a normalized root mean square error(NRMSE)of 9.91%demonstrates the excellent potential for mapping CLQ over large areas.The model based on the seven optimal indicators of crop phenology provided higher accuracy than the GA-BPNN model based on the normalized difference vegetation index(NDVI)indicators in the spatial domain,significantly decreasing the NRMSE of the CLQ estimates by 3.17%.This further implied that the spectral indicators in the spatial frequency domain can improve the accuracy of estimating CLQ. 展开更多
关键词 Cultivated land quality Time-series spectral data Spectral indicators spatial frequency domain Conghua district
原文传递
Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals 被引量:5
18
作者 F. H. ZHANG S. F. WANG +2 位作者 C. H. AN J. WANG Q. XU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第2期193-202,共10页
Large-aperture potassium dihydrogen phos- phate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ult... Large-aperture potassium dihydrogen phos- phate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ultra-precision fly cutting. When processing KDP crystals by ultra-precision fly cutting, the dynamic characteristics of the fly cutting machine and fluctuations in the fly cutting environment are translated into surface errors at different spatial frequency bands. These machin- ing errors should be suppressed effectively to guarantee that KDP crystals meet the full-band machining accuracy specified in the evaluation index. In this study, the anisotropic machinability of KDP crystals and the causes of typical surface errors in ultra-precision fly cutting of the material are investigated. The structures of the fly cutting machine and existing processing parameters are optimized to improve the machined surface quality. The findings are theoretically and practically important in the development of high-energy laser systems in China. 展开更多
关键词 ultra-precision fly cutting large-aperture KDP crystals spatial frequency processing error
原文传递
Psycho-visual modulation based information display:introduction and survey
19
作者 Ning LIU Zhongpai GAO +1 位作者 Jia WANG Guangtao ZHAI 《Frontiers of Computer Science》 SCIE EI CSCD 2021年第3期15-32,共18页
Industry and academia have been making great efforts in improving refresh rates and resolutions of display devices to meet the ever increasing needs of consumers for better visual quality.As a result,many modem displa... Industry and academia have been making great efforts in improving refresh rates and resolutions of display devices to meet the ever increasing needs of consumers for better visual quality.As a result,many modem displays have spatial and temporal resolutions far beyond the discern capability of human visual systems.Thus,leading to the possibility of using those display-eye redundancies for innovative usages.Tempo-ral/spatial psycho-visual modulation(TPVM/SPVM)was proposed to exploit those redundancies to generate multiple visual percepts for different viewers or to transmit non-visual data to computing devices without affecting normal viewing.This paper reviews the STPVM technology from both conceptual and algorithmic perspectives,with exemplary applications in multiview display,display with visible light communication,etc.Some possible future research directions are also identified. 展开更多
关键词 information display human visual system spatial frequency temporal frequency non-negative matrix decomposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部