期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于ScSPM-Reranking的高分辨率遥感影像的检索
1
作者 弓永利 朱盼盼 王跃宾 《高技术通讯》 北大核心 2017年第4期335-341,共7页
为了从高分辨率遥感影像中获取详细的地表地物信息,为城市规划、环境监测以及灾情分析提供可靠的数据,进行了高分辨率遥感影像的检索研究,包括对图像的特征提取和图像之间相似度的描述。为了提高图像检索精度,运用了采用稀疏编码(Sc)的... 为了从高分辨率遥感影像中获取详细的地表地物信息,为城市规划、环境监测以及灾情分析提供可靠的数据,进行了高分辨率遥感影像的检索研究,包括对图像的特征提取和图像之间相似度的描述。为了提高图像检索精度,运用了采用稀疏编码(Sc)的空间塔式匹配(Sc SPM)技术和重排序(Reranking)技术,提出了基于Sc SPM结合Reranking(ScSPM-Reranking)的遥感高分辨率影像的检索方法。该方法首先使用Sc SPM提取空间场景的特征,然后结合这些特征使用cityblock距离进行初步检索,最后对初步检索的结果进行Reranking排序,获得高精度的检索结果。同其他检索方法进行了对比实验,实验结果证明,该方法具有较高的检索精度。 展开更多
关键词 高分辨率遥感影像 图像特征描述 图像检索 RERANKING 稀疏编码(Sc) 空间塔式匹配(SPM)
下载PDF
基于ScSPM算法的蛹虫草长势识别研究
2
作者 万华 谢志亨 涂淑琴 《现代计算机》 2018年第18期46-49,共4页
蛹虫草是我国一种珍贵的药食两用菌,具有重要的经济价值。但目前蛹虫草长势判断完全依赖人工作业,导致种植生产效率低下。应用稀疏编码的空间金字塔匹配(ScSPM)方法实现对蛹虫草四个生长阶段的自动识别。首先将蛹虫草图像转化为RGB颜色... 蛹虫草是我国一种珍贵的药食两用菌,具有重要的经济价值。但目前蛹虫草长势判断完全依赖人工作业,导致种植生产效率低下。应用稀疏编码的空间金字塔匹配(ScSPM)方法实现对蛹虫草四个生长阶段的自动识别。首先将蛹虫草图像转化为RGB颜色通道信息提取其SIFT特征;然后利用ScSPM获取其高层特征;最后输入线性支持向量机(SVM)实现不同生长阶段的自动判别。实验数据表明平均识别准确率超过93%。该研究为以后的蛹虫草长势智能监控提供技术支持,提高其生产效率。 展开更多
关键词 蛹虫草 长势识别 稀疏编码空间金字塔匹配(scspm) SIFT特征
下载PDF
基于稀疏编码多尺度空间潜在语义分析的图像分类 被引量:26
3
作者 赵仲秋 季海峰 +2 位作者 高隽 胡东辉 吴信东 《计算机学报》 EI CSCD 北大核心 2014年第6期1251-1260,共10页
传统潜在语义分析方法无法利用图像中区域语义构成的上下文信息来获得图像目标空间分布信息,因此它丢掉了局部特征之间的空间关系信息.而基于最近邻矢量量化来构造共生矩阵具有较大的量化误差,使得特征描述缺乏鲁棒性,影响后续潜在语义... 传统潜在语义分析方法无法利用图像中区域语义构成的上下文信息来获得图像目标空间分布信息,因此它丢掉了局部特征之间的空间关系信息.而基于最近邻矢量量化来构造共生矩阵具有较大的量化误差,使得特征描述缺乏鲁棒性,影响后续潜在语义分析获得特征的精确性.为了弥补这些不足,文中提出了一种基于稀疏编码的多尺度空间潜在语义分析的图像分类方法.首先通过空间金字塔方法对图像进行空间多尺度划分,然后利用稀疏编码对每个局部块特征进行软量化以形成共生矩阵,之后结合概率潜在语义分析(PLSA)获得每个局部块的潜在语义信息,再利用权值串接每个特定局部块中的语义信息得到图像多尺度空间潜在语义信息,最后用支持向量机(SVM)分类器完成图像的场景分类.在常见图像库上的实验表明,本文提出的基于稀疏编码的多尺度空间潜在语义分析方法平均分类精度比现有诸多方法均有明显提高,验证了其有效性和鲁棒性.实验还表明,空间金字塔匹配、稀疏编码共生矩阵以及PLSA降维这3个模块在该文方法中缺一不可,共同提升图像表征和分类性能. 展开更多
关键词 图像分类 稀疏编码 潜在语义分析 空间金字塔
下载PDF
基于非负弹性网稀疏编码算法的图像分类方法 被引量:4
4
作者 张勇 张阳阳 +1 位作者 程洪 张艳霞 《计算机工程》 CAS CSCD 北大核心 2017年第7期239-243,249,共6页
为提高图像分类的准确率,提出一种非负弹性网稀疏编码算法。利用非负稀疏编码算法和弹性网模型,在稀疏编码优化模型的目标函数中引入l_2范数正则项,增加编码系数的非负约束,并将该算法与空间金字塔模型相结合应用于图像分类。实验结果表... 为提高图像分类的准确率,提出一种非负弹性网稀疏编码算法。利用非负稀疏编码算法和弹性网模型,在稀疏编码优化模型的目标函数中引入l_2范数正则项,增加编码系数的非负约束,并将该算法与空间金字塔模型相结合应用于图像分类。实验结果表明,与传统的稀疏编码算法相比,该算法不仅能提高编码的判别性与有效性,而且可使相似的特征描述符编码后仍然相似,增强编码的稳定性,具有较高的分类准确度。 展开更多
关键词 图像分类 稀疏编码 空间金字塔匹配 弹性网 字典学习 支持向量机
下载PDF
基于互信息的多通道联合稀疏模型及其组织病理图像分类 被引量:4
5
作者 汤红忠 李骁 +1 位作者 张小刚 张东波 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第8期1514-1521,共8页
针对传统联合稀疏模型中共有分量与独有分量都采用相同的字典进行特征表示,导致编码系数判别性低的问题,提出一种基于互信息的多通道联合稀疏模型,并将其应用于组织病理图像的分类.该模型通过K均值对样本特征进行聚类,分别得到R,G与B通... 针对传统联合稀疏模型中共有分量与独有分量都采用相同的字典进行特征表示,导致编码系数判别性低的问题,提出一种基于互信息的多通道联合稀疏模型,并将其应用于组织病理图像的分类.该模型通过K均值对样本特征进行聚类,分别得到R,G与B通道的字典;其次利用样本特征与3个字典之间的互信息,剔除弱相关原子且构造了1个共有字典与3个独有字典,以此为基础建立了多通道联合稀疏模型;同时引入图像的空间信息,结合空间金字塔匹配模型对不同层次的图像特征进行联合稀疏编码,利用编码系数训练SVM分类器.实验结果表明,该模型具有更好的特征表示能力,大大提高了编码系数的判别性,获得了较好的分类性能与较强的鲁棒性. 展开更多
关键词 互信息 多通道联合稀疏模型 空间金字塔匹配 组织病理图像分类
下载PDF
基于稀疏编码的脑脊液图像快速识别模型 被引量:7
6
作者 黄文明 蔡文正 邓珍荣 《计算机应用》 CSCD 北大核心 2014年第7期2040-2043,2049,共5页
考虑到采用传统的图像分割算法很难准确地分割脑脊液(CSF)细胞图像,提出了一种基于稀疏编码的脑脊液图像快速识别模型。该模型首先利用稀疏编码提取图像中的局部特征以及特征描述子,然后将特征描述子转换成线性空间金字塔匹配(SPM)结构... 考虑到采用传统的图像分割算法很难准确地分割脑脊液(CSF)细胞图像,提出了一种基于稀疏编码的脑脊液图像快速识别模型。该模型首先利用稀疏编码提取图像中的局部特征以及特征描述子,然后将特征描述子转换成线性空间金字塔匹配(SPM)结构,最后将计算结果输入到线性支持向量机(SVM)中进行训练和预测。对脑脊液细胞图像做了异常识别和分类测试,其中异常识别准确率达到了89.4±0.9%,且对每张760×570的图像平均识别时间只需1.3 s,由此可以表明所提出的模型能够有效快速地区分脑脊液细胞是否异常。 展开更多
关键词 稀疏编码 脑脊液 无监督学习 线性空间金字塔匹配 线性支持向量机
下载PDF
基于Edge Boxes的大型车辆车标检测与识别 被引量:3
7
作者 李熙莹 吕硕 +2 位作者 江倩殷 袁敏贤 余志 《计算机工程与应用》 CSCD 北大核心 2018年第12期152-159,共8页
传统车标检测与识别算法难以检测大型车辆车标,且速度较慢。提出了一种基于Edge Boxes的大型车辆车标检测与识别方法。Edge Boxes算法是一种成熟的图像分割算法,能够快速且有效地检测物体位置,满足大型车辆车标检测与识别问题的准确性... 传统车标检测与识别算法难以检测大型车辆车标,且速度较慢。提出了一种基于Edge Boxes的大型车辆车标检测与识别方法。Edge Boxes算法是一种成熟的图像分割算法,能够快速且有效地检测物体位置,满足大型车辆车标检测与识别问题的准确性及实时性的需求。该方法首先根据车标在车辆中的空间位置关系初选车标候选区,然后利用Edge Boxes算法进行目标提取,进而将提取得到的目标送入利用线性约束编码构建的车标检测分类器和车标识别分类器进行训练与识别,得到车标检测与识别结果。对不同卡口的不同天气和光照条件下采集的4 480张图像(含50类大型车辆)进行实验,实验结果表明,在检测与识别性能以及时间消耗方面均优于传统方法,具有良好的实用前景。 展开更多
关键词 大型车辆 车标检测与识别 Edge BOXES 线性约束编码 车标定位分类器 车标识别分类器
下载PDF
基于核拉普拉斯稀疏编码的图像分类 被引量:2
8
作者 张立和 潘磊 +1 位作者 刘涛 马臣 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第2期192-197,共6页
使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,... 使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,增强稀疏编码的性能.在3个标准数据集上的实验结果表明,所提出的基于KLSc的图像分类算法具有良好的分类效果,分类正确率优于LSc. 展开更多
关键词 图像分类 稀疏编码 拉普拉斯稀疏编码 核方法 空间金字塔匹配(SPM)
下载PDF
基于分层特征融合的行人分类 被引量:2
9
作者 孙锐 张广海 丁文秀 《计算机工程与科学》 CSCD 北大核心 2016年第10期2115-2120,共6页
针对复杂环境中的行人检测问题,提出了一种有效的基于分层稀疏编码的图像表示方法。首先通过两层稀疏编码模型结合基于K-SVD的深度学习算法来获得图像的稀疏表示,对图像块及同一区域的高阶依赖关系进行了建模,形成一个有效的无监督特征... 针对复杂环境中的行人检测问题,提出了一种有效的基于分层稀疏编码的图像表示方法。首先通过两层稀疏编码模型结合基于K-SVD的深度学习算法来获得图像的稀疏表示,对图像块及同一区域的高阶依赖关系进行了建模,形成一个有效的无监督特征学习方法;然后将得到的稀疏表示与SIFT描述符的稀疏表示进行特征融合,得到了更加全面、更加可判别的图像表示;最后结合SVM分类器应用于行人分类任务。实验结果表明,该行人分类方法对比同类方法在性能上有明显改善。 展开更多
关键词 行人分类 稀疏编码 空间金字塔匹配 特征融合 K—SVD
下载PDF
一种基于稀疏编码空间金字塔匹配的图像分类算法 被引量:2
10
作者 赵嵩 冯湘 《应用光学》 CAS CSCD 北大核心 2016年第5期706-711,共6页
图像分类技术是近年来计算机视觉领域中的研究热点,在移动互联网领域中取得了成功应用。提出了一种基于稀疏编码空间金字塔匹配的图像分类算法。该方法首先对图像的SIFT特征进行稀疏编码,替代了传统的矢量量化方法,可以有效降低量化误差... 图像分类技术是近年来计算机视觉领域中的研究热点,在移动互联网领域中取得了成功应用。提出了一种基于稀疏编码空间金字塔匹配的图像分类算法。该方法首先对图像的SIFT特征进行稀疏编码,替代了传统的矢量量化方法,可以有效降低量化误差,构建更为准确的图像表征方式,然后结合空间金字塔匹配算法采用线性分类器对图像进行分类识别。在标准测试图像数据库上的实验结果表明,相比BOF和SPM方法,该算法可以将图像分类准确率提高4%~12%。 展开更多
关键词 图像分类 稀疏编码 空间金字塔匹配 词袋模型
下载PDF
基于多层次视觉语义特征融合的图像检索算法 被引量:4
11
作者 张霞 郑逢斌 《包装工程》 CAS 北大核心 2018年第19期223-232,共10页
目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神... 目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神经网络(DCNN)特征、Fisher向量、稀疏编码空间金字塔匹配特征(SCSPM));其次,为了对3种特征进行有效融合,定义一种基于图的半监督学习模型,将提取的3个中层特征进行融合,形成一个多层次视觉语义特征,有效结合3种不同中层特征的互补信息,提高图像特征描述,从而降低检索算法中的语义鸿沟;最后,引入具有视觉特性与语义统一的距离函数,根据提取的多层次视觉语义特征来计算查询图像和训练图像的相似度量,完成图像检索任务。结果实验结果表明,与当前检索方法对比,文中算法具有更高的检索精度与效率。结论所提算法具有良好的检索准确度,在医疗、包装商标等领域具有一定的参考价值。 展开更多
关键词 图像检索 深度卷积神经网络 Fisher向量 稀疏编码空间金字塔匹配 多层次视觉语义特征 半监督学习
下载PDF
子区域视觉短语稀疏编码的图像检索
12
作者 王瑞霞 彭国华 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第5期721-726,共6页
针对BOVW模型忽略图像特征空间排列导致量化误差较大的缺点,利用角点和特征点对图像进行区域分割,结合区域的空间排列信息,提出一种多通道融合的图像检索方法。其主要思想是将子区域编码和特征空间排列直方图结合组建视觉短语,这种构造... 针对BOVW模型忽略图像特征空间排列导致量化误差较大的缺点,利用角点和特征点对图像进行区域分割,结合区域的空间排列信息,提出一种多通道融合的图像检索方法。其主要思想是将子区域编码和特征空间排列直方图结合组建视觉短语,这种构造方式在减少编码误差的同时还能更好地保留局部空间信息。首先,利用稀疏编码保留局部信息的高效性对提取的子区域进行编码;其次,利用特征的空间位置关系,计算子区域内的特征空间排列直方图;利用区域编码和特征排列直方图构建视觉短语;最后,结合BOVW模型的鲁棒性,统计视觉短语直方图用于图像检索。实验结果表明,该检索方法不仅比BOVW和SPMBOVM有更好的检索准确率,而且其编码过程稳定,误差较小。 展开更多
关键词 角点 BOVW模型 视觉短语 稀疏编码 图像检索 SPM模型
下载PDF
基于稀疏编码空间金字塔模型的零样本学习 被引量:1
13
作者 董夙慧 徐永刚 陈晨 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第6期696-702,共7页
针对目前零样本图像分类均采用图像底层视觉特征训练属性分类器而导致分类精度较低的问题,提出一种基于稀疏编码空间金字塔模型的零样本学习方法,给出系统结构流程图.首先从原始视觉图像中提取SIFT特征,并进行SIFT特征点提取;然后构建... 针对目前零样本图像分类均采用图像底层视觉特征训练属性分类器而导致分类精度较低的问题,提出一种基于稀疏编码空间金字塔模型的零样本学习方法,给出系统结构流程图.首先从原始视觉图像中提取SIFT特征,并进行SIFT特征点提取;然后构建空间金字塔最大池化模型,对已提取的SIFT中间特征进行稀疏编码;最后建立间接属性预测模型.给出基于稀疏编码的空间金字塔最大池化模型的零样本学习算法步骤,完成对目标图像的属性预测,从而达到零样本图像分类的目的.在Shoes数据集与OSR数据集上进行了对比试验.结果表明:试验证实了文中算法的有效性;相对于传统算法,试验耗时减少,图像属性预测精度增加,图像分类识别率提高. 展开更多
关键词 视觉特征 零样本问题 稀疏编码 空间金字塔模型 属性分类器
下载PDF
一种基于稀疏编码的鲁棒跟踪改进算法
14
作者 王洁 丁萌 +2 位作者 张天慈 张旭 杨汝名 《计算机工程》 CAS CSCD 北大核心 2018年第6期194-199,共6页
针对在跟踪过程中目标易受到遮挡、姿态变化、光照变化、复杂背景等问题的影响,提出一种改进的鲁棒跟踪算法。采用局部块稀疏编码方式,结合尺度不变特征及空间金字塔特征匹配技术进行目标表观建模。在粒子滤波的框架下引入运动估计以获... 针对在跟踪过程中目标易受到遮挡、姿态变化、光照变化、复杂背景等问题的影响,提出一种改进的鲁棒跟踪算法。采用局部块稀疏编码方式,结合尺度不变特征及空间金字塔特征匹配技术进行目标表观建模。在粒子滤波的框架下引入运动估计以获取目标最优位置,并在跟踪过程中实时更新模板。实验结果表明,与DFT、FCT、OAB等常用跟踪算法相比,该算法在复杂情况下仍能保持较好的跟踪鲁棒性。 展开更多
关键词 目标跟踪 稀疏编码 空间金字塔匹配 粒子滤波 运动估计
下载PDF
哈希编码结合空间金字塔的图像分类 被引量:8
15
作者 彭天强 栗芳 《中国图象图形学报》 CSCD 北大核心 2016年第9期1138-1146,共9页
目的稀疏编码是当前广泛使用的一种图像表示方法,针对稀疏编码及其改进算法计算过程复杂、费时等问题,提出一种哈希编码结合空间金字塔的图像分类算法。方法首先,提取图像的局部特征点,构成局部特征点描述集。其次,学习自编码哈希... 目的稀疏编码是当前广泛使用的一种图像表示方法,针对稀疏编码及其改进算法计算过程复杂、费时等问题,提出一种哈希编码结合空间金字塔的图像分类算法。方法首先,提取图像的局部特征点,构成局部特征点描述集。其次,学习自编码哈希函数,将局部特征点表示为二进制哈希编码。然后,在二进制哈希编码的基础上进行K均值聚类生成二进制视觉词典。最后,结合空间金字塔模型,将图像表示为空间金字塔直方图向量,并应用于图像分类。结果在常用的Caltech-101和Scene-15数据集上进行实验验证,并和目前与稀疏编码相关的算法进行实验对比。与稀疏编码相关的算法相比,本文算法词典学习时间缩短了50%,在线编码速度提高了1.3~12.4倍,分类正确率提高了1%~5%。结论提出了一种哈希编码结合空间金字塔的图像分类算法,利用哈希编码代替稀疏编码对局部特征点进行编码,并结合空间金字塔模型用于图像分类。实验结果表明,本文算法词典学习时间更短、编码速度更快,适用于在线词典学习和应用。 展开更多
关键词 哈希编码 空间金字塔匹配模型 稀疏编码 二进制K均值聚类 图像分类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部