Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a mac...Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.展开更多
A new algorithm called spatially aware routing algorithm with enhanced learning (SAREL) is proposed to guarantee the rationality of route selecting in inter-vehicle communication scenario. Firstly, the traffic model i...A new algorithm called spatially aware routing algorithm with enhanced learning (SAREL) is proposed to guarantee the rationality of route selecting in inter-vehicle communication scenario. Firstly, the traffic model is discussed and set up by using Poisson distribution. Then we analyze the process of traffic evaluation with enhanced learning, and exploit movement estimation to assist state memorization. The improvement of algorithm is provided at last compared with our previous work. Simulation results show that SAREL algorithm could achieve better performance in packet delivery ratio, especially when network connection ratio is average. Key words mobile ad hoc network - spatially aware routing - enhanced learning CLC number TP 316 Foundation item: Supported by Open Laboratory Foundation by China Ministry of Education (TKLJ9903), Project CarTALK 2000 by the European Commission (IST-2000-28185) and Project FleetNet-Internet on the Road by the German Ministry of Education and Research (01AK025)Biography: HAN Lu (1974-), male, Ph. D candidate, research direction; distributed artificial intelligence.展开更多
基金Sponsored by the Transportation Science and Technology Planning Project of Henan Province,China(Grant No.2019G-2-2).
文摘Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.
文摘A new algorithm called spatially aware routing algorithm with enhanced learning (SAREL) is proposed to guarantee the rationality of route selecting in inter-vehicle communication scenario. Firstly, the traffic model is discussed and set up by using Poisson distribution. Then we analyze the process of traffic evaluation with enhanced learning, and exploit movement estimation to assist state memorization. The improvement of algorithm is provided at last compared with our previous work. Simulation results show that SAREL algorithm could achieve better performance in packet delivery ratio, especially when network connection ratio is average. Key words mobile ad hoc network - spatially aware routing - enhanced learning CLC number TP 316 Foundation item: Supported by Open Laboratory Foundation by China Ministry of Education (TKLJ9903), Project CarTALK 2000 by the European Commission (IST-2000-28185) and Project FleetNet-Internet on the Road by the German Ministry of Education and Research (01AK025)Biography: HAN Lu (1974-), male, Ph. D candidate, research direction; distributed artificial intelligence.