Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transf...Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transform(SRP-PHAT)spatial spectrum as input feature is presented in this paper.Since the SRP-PHAT spatial power spectrum contains spatial location information,it is adopted as the input feature for sound source localization.DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features.SRP-PHAT at each steering position within a frame is arranged into a vector,which is treated as DNN input.A DNN model which can map the SRP-PHAT spatial spectrum to the azimuth of sound source is learned from the training signals.The azimuth of sound source is estimated through trained DNN model from the testing signals.Experiment results demonstrate that the proposed algorithm significantly improves localization performance whether the training and testing condition setup are the same or not,and is more robust to noise and reverberation.展开更多
Spectrum sensing is the key problem for Cognitive Radio(CR) systems.A method based on the Peak-to-Average Amplitude-Ratio(PAAR) of the Spatial Spectrum(SS) of the received signals is proposed to sense the available sp...Spectrum sensing is the key problem for Cognitive Radio(CR) systems.A method based on the Peak-to-Average Amplitude-Ratio(PAAR) of the Spatial Spectrum(SS) of the received signals is proposed to sense the available spectrum for the cognitive users with the help of the multiple antennas at the receiver of the cognitive users.The greatest advantage of the new method is that it requires no information of the noise power and is free of the noise power uncertainty.Both the simulation and the analytical results show that the proposed method is robust to noise uncertainty,and greatly outperform the classical Energy Detector(ED) method.展开更多
Fourier ptychographic microscopy(FPM)is a newly developed imaging technique which stands out by virtue of its high-resolution and wide FOV.It improves a microscope's imaging perfor-mance beyond the diffraction lim...Fourier ptychographic microscopy(FPM)is a newly developed imaging technique which stands out by virtue of its high-resolution and wide FOV.It improves a microscope's imaging perfor-mance beyond the diffraction limit of the employed optical components by illuminating the sample with oblique waves of different incident angles,similar to the concept of synthetic aperture.We propose to use an objective lens with high-NA to generate oblique illuminating waves in FPM.We demonstrate utilizing an objective lens with higher NA to iluminate the sample leads to better resolution by simulations,in which a resolution of 0.28 pum is achieved by using a high-NA illuminating objective lens(NA=1.49)and a low-NA collecting objective lens(NA=0.2)in coherent imaging(λ=488 nm).We then deeply study FPM's exact relevance of convergence speed to spatial spectrum overlap in frequency domain.The simulation results show that an overlap of about 60%is the optimal choice to acquire a high-quality recovery(520*520 pixels)with about 2 min's computing time.In addition,we testify the robustness of the algorithm of FPM to additive noises and its suitability for phase objects,which further proves FPM's potential application in biomedical imaging.展开更多
The problem of bearing estimation of coherent signal impingiog on an array ofarbitrary geometry is studied.Both approaches are developed,the first one synthesizes theobserved array data into the outputs of a linear un...The problem of bearing estimation of coherent signal impingiog on an array ofarbitrary geometry is studied.Both approaches are developed,the first one synthesizes theobserved array data into the outputs of a linear uniform array and then processes them viaconventional techniques such as spatial smoothing etc.The second approach is based on theinvariant subspace rotation operation which is equivalent to the translational displacement ofthe artay,linearly independent signal vectors are obtained thereby to span perfectly the signalsubspace.As compared with the conventional processing techniques,the approach based oninvariant subspace rotation does not lead to an effective decrease in aperture size and thereforea decrease in resolution capability.The computer simulations are conducted to demonstrate theeffectiveness of the presented approaches.展开更多
The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conv...The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.展开更多
Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characterist...Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characteristic space were researched through the analysis of two-dimensional and three-dimensional scatter diagrams. The results indicate that the hyper-space of remote sensing multi-data aggregation belongs to low-dimensional geometric structure, i.e. hyperplane form, and anomalous point groups including alteration information usually dissociate out of hyperplane. Scatter diagrams of remote sensing data band are mainly presented as two distribution forms of single-ellipse and dual-ellipse. Clarifying the relations of three objects of background, disturbance and alteration information in remote sensing images provides an important technical thought and guidance for accurately detecting and extracting remote sensing alteration information.展开更多
A realistic population density distribution scenario in conjunction with the spatial dynamic spectrum allocation (DSA) is taken into account to mitigate the spectrum wastage in terms of extra guard bands. For the in...A realistic population density distribution scenario in conjunction with the spatial dynamic spectrum allocation (DSA) is taken into account to mitigate the spectrum wastage in terms of extra guard bands. For the insertion of the extra guard bands, an efficient strategy based on self-assessment is applied to each victim cell individually and independently. Consequently, it is no more required to spread the extra guard band over the whole DSA region. Simulation results StlOW an improvement of 3% -4% in percentage of satisfied users for Universal Mobile Telecommunications System (UMTS) network and 4%-5% for Digital Video Broadcasting Terrestrial (DVB-T) network.展开更多
In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band s...In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.展开更多
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo...In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.展开更多
The increasing interest for wireless communication services and scarcity of radio spectrum resources have created the need for a more flexible and efficient usage of the radio frequency bands. Cognitive Radio (CR) eme...The increasing interest for wireless communication services and scarcity of radio spectrum resources have created the need for a more flexible and efficient usage of the radio frequency bands. Cognitive Radio (CR) emerges as an important trend for a solution to this problem. Spectrum sensing is a crucial function in a CR system. Cooperative spectrum sensing can overcome fading and shadowing effects, and hence increase the reliability of primary user detection. In this paper we consider a system model of a dedicated detect-andforward wireless sensor network (DetF WSN) for cooperative spectrum sensing with k-out-of-n decision fusion in the presence of reporting channels errors. Using this model we consider the design of a spatial reuse media access control (MAC) protocol based on TDMA/OFDMA to resolve conflicts and conserve resources for intra-WSN communication. The influence of the MAC protocol on spectrum sensing performance of the WSN is a key consideration. Two design approaches, using greedy and adaptive simulated annealing (ASA) algorithms, are considered in detail. Performance results assuming a grid network in a Rician fading environment are presented for the two design approaches.展开更多
[ Objective] The research aimed to analyze temporal-spatial variation characteristics of the extreme precipitation days over South China from 1961 to 2010. [ Method] Based on the daily precipitation data in meteorolog...[ Objective] The research aimed to analyze temporal-spatial variation characteristics of the extreme precipitation days over South China from 1961 to 2010. [ Method] Based on the daily precipitation data in meteorological stations over South China, extreme precipitation thresholds were determined according to the percentiles distribution for different stations. Temporal-spatial variation characteristics of the extreme precipitation days over South China were studied by the methods of fuzzy clustering, trend coefficient, wavelet analysis and cross spectrum analysis, etc. [ Re- suit] Four sub-regions were identified over South China. They were respectively Nanling area, west Guangxi area, Coast area and Hainan area. Occurrence seasons of the extreme precipitations in each sub-region were significantly different. Extreme precipitation clays in four sub-regions all had increase trends, and those of Nanling area and Coast area were significant. From wavelet analysis and cress spectrum analysis, there were significant periodic variation characteristics. Extreme precipitation days in each sub-region all had significant same-phase evolution trends at the peri- od of 2 -5 years, but backward time length was different. [ Conclusion] The research provided background materials for forecast and influence as- sessment of the extremely heavy precipitation over South China.展开更多
In this work, we present a new method of directly determining Fourier components of the spatial correlation function of the dielectric susceptibility of random medium. The method is based on the analysis of the ratio ...In this work, we present a new method of directly determining Fourier components of the spatial correlation function of the dielectric susceptibility of random medium. The method is based on the analysis of the ratio of the spectrum of the light scattered by the spatial correlation components of the dielectric susceptibility of tissue to the spectrum of light scattered by the randomly distributed scatterers which are independent on the value of the spectrum of the incident light and the direction of the observation. The results may find wide applications in areas such as in biomedical diagnosis.展开更多
As a promising solution, virtualization is vigorously developed to eliminate the ossification of traditional Internet infrastructure and enhance the flexibility in sharing the substrate network (SN) resources includin...As a promising solution, virtualization is vigorously developed to eliminate the ossification of traditional Internet infrastructure and enhance the flexibility in sharing the substrate network (SN) resources including computing, storage, bandwidth, etc. With network virtualization, cloud service providers can utilize the shared substrate resources to provision virtual networks (VNs) and facilitate a wide and diverse range of applications. As more and more internet applications migrate to the cloud, the resource efficiency and the survivability of VNs, such as single link failure or large-scale disaster survivability, have become crucial issues. Elastic optical networks have emerged in recent years as a strategy for dealing with the divergence of network application bandwidth needs. The network capacity has been constrained due to the usage of only two multiplexing dimensions. As transmission rates rise, so does the demand for network failure protection. Due to their end-to-end solutions, those safe-guarding paths are of particular importance among the protection methods. Due to their end-to-end solutions, those safeguarding paths are of particular importance among the protection methods. This paper presents approaches that provide a failure-independent route-protecting p-cycle for path protection in space-division multiplexed elastic optical networks. This letter looks at two SDM network challenges and presents a heuristic technique (k-shortest path) for each. In the first approach, we study a virtual network embedding (SVNE) problem and propose an algorithm for EONs, which can combat against single-link failures. We evaluate the proposed POPETA algorithm and compare its performance with some counterpart algorithms. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance in terms of spectrum utilization and blocking ratio, even if with a higher backup redundancy ratio.展开更多
无人机协同目标感知技术是有人机无人机混合运行的重要安全保障.针对复杂空域环境下的感知可靠性问题,分析大中型无人机的复杂融合空域运行场景,并确定无人机协同目标感知的精准性、高实时性、抗干扰性和低载荷性等需求,提出一种四单元...无人机协同目标感知技术是有人机无人机混合运行的重要安全保障.针对复杂空域环境下的感知可靠性问题,分析大中型无人机的复杂融合空域运行场景,并确定无人机协同目标感知的精准性、高实时性、抗干扰性和低载荷性等需求,提出一种四单元阵列天线和数字化射频体制的无人机协同目标感知系统架构;同时,结合空管雷达信号特性和天线体制,设计方位感知算法,通过修正协方差矩阵、信号子空间加权和噪声子空间加权等方法,设计基于多信号分类(multiple signal classification,MUSIC)的空间谱估计算法,并提出基于子空间分解的幅相误差在线估计算法;最后,开展算法仿真试验和实际空域环境飞行试验.研究结果表明:相比传统MUSIC算法,优化算法的方位感知高分辨性能提升23.3%,并改善了无人机协同目标方位感知的高实时性、抗干扰性和低载荷性.展开更多
基金This work is supported by the National Nature Science Foundation of China(NSFC)under Grant No.61571106Jiangsu Natural Science Foundation under Grant No.BK20170757the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under grant No.17KJD510002.
文摘Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transform(SRP-PHAT)spatial spectrum as input feature is presented in this paper.Since the SRP-PHAT spatial power spectrum contains spatial location information,it is adopted as the input feature for sound source localization.DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features.SRP-PHAT at each steering position within a frame is arranged into a vector,which is treated as DNN input.A DNN model which can map the SRP-PHAT spatial spectrum to the azimuth of sound source is learned from the training signals.The azimuth of sound source is estimated through trained DNN model from the testing signals.Experiment results demonstrate that the proposed algorithm significantly improves localization performance whether the training and testing condition setup are the same or not,and is more robust to noise and reverberation.
基金Supported by the National Natural Science Foundation of China (No. 60602053)Program for New Century Excellent Talents in University (NCET-08-0891)+2 种基金the Natural Science Foundation of Shaanxi Province (2010JQ80241)the Natural Science Foundation of Hubei Province (2009 CDB308)the Fund from Education Department of Shaanxi Government (2010JK836)
文摘Spectrum sensing is the key problem for Cognitive Radio(CR) systems.A method based on the Peak-to-Average Amplitude-Ratio(PAAR) of the Spatial Spectrum(SS) of the received signals is proposed to sense the available spectrum for the cognitive users with the help of the multiple antennas at the receiver of the cognitive users.The greatest advantage of the new method is that it requires no information of the noise power and is free of the noise power uncertainty.Both the simulation and the analytical results show that the proposed method is robust to noise uncertainty,and greatly outperform the classical Energy Detector(ED) method.
基金the National Basic Research Program of China(973 Program)(No.2015CB352003)the National Natural Science Foundation of China(No.61335003,61377013,61378051 and 61427818)+1 种基金NSFC of Zhejiang province LR16F050001,Innovation Joint Research Center for iCPS(2015XZZX005-01)Open Foundation of the State Key Laboratory of Modern Optical Instrumentation.
文摘Fourier ptychographic microscopy(FPM)is a newly developed imaging technique which stands out by virtue of its high-resolution and wide FOV.It improves a microscope's imaging perfor-mance beyond the diffraction limit of the employed optical components by illuminating the sample with oblique waves of different incident angles,similar to the concept of synthetic aperture.We propose to use an objective lens with high-NA to generate oblique illuminating waves in FPM.We demonstrate utilizing an objective lens with higher NA to iluminate the sample leads to better resolution by simulations,in which a resolution of 0.28 pum is achieved by using a high-NA illuminating objective lens(NA=1.49)and a low-NA collecting objective lens(NA=0.2)in coherent imaging(λ=488 nm).We then deeply study FPM's exact relevance of convergence speed to spatial spectrum overlap in frequency domain.The simulation results show that an overlap of about 60%is the optimal choice to acquire a high-quality recovery(520*520 pixels)with about 2 min's computing time.In addition,we testify the robustness of the algorithm of FPM to additive noises and its suitability for phase objects,which further proves FPM's potential application in biomedical imaging.
文摘The problem of bearing estimation of coherent signal impingiog on an array ofarbitrary geometry is studied.Both approaches are developed,the first one synthesizes theobserved array data into the outputs of a linear uniform array and then processes them viaconventional techniques such as spatial smoothing etc.The second approach is based on theinvariant subspace rotation operation which is equivalent to the translational displacement ofthe artay,linearly independent signal vectors are obtained thereby to span perfectly the signalsubspace.As compared with the conventional processing techniques,the approach based oninvariant subspace rotation does not lead to an effective decrease in aperture size and thereforea decrease in resolution capability.The computer simulations are conducted to demonstrate theeffectiveness of the presented approaches.
文摘The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.
基金Project(2006BAB01A06) supported by the National Science and Technology Pillar Program Project during the 11th Five-Year Plan PeriodProject(1212010761503) supported by Land and Resources Investigation Project
文摘Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characteristic space were researched through the analysis of two-dimensional and three-dimensional scatter diagrams. The results indicate that the hyper-space of remote sensing multi-data aggregation belongs to low-dimensional geometric structure, i.e. hyperplane form, and anomalous point groups including alteration information usually dissociate out of hyperplane. Scatter diagrams of remote sensing data band are mainly presented as two distribution forms of single-ellipse and dual-ellipse. Clarifying the relations of three objects of background, disturbance and alteration information in remote sensing images provides an important technical thought and guidance for accurately detecting and extracting remote sensing alteration information.
基金The National High-Tech Research and Development Program of China ( No.2005AA123950)the National Science Foundation of China (No.90604035)
文摘A realistic population density distribution scenario in conjunction with the spatial dynamic spectrum allocation (DSA) is taken into account to mitigate the spectrum wastage in terms of extra guard bands. For the insertion of the extra guard bands, an efficient strategy based on self-assessment is applied to each victim cell individually and independently. Consequently, it is no more required to spread the extra guard band over the whole DSA region. Simulation results StlOW an improvement of 3% -4% in percentage of satisfied users for Universal Mobile Telecommunications System (UMTS) network and 4%-5% for Digital Video Broadcasting Terrestrial (DVB-T) network.
文摘In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.
基金National Natural Science Foundation of China Under Grant No. 50478112
文摘In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.
文摘The increasing interest for wireless communication services and scarcity of radio spectrum resources have created the need for a more flexible and efficient usage of the radio frequency bands. Cognitive Radio (CR) emerges as an important trend for a solution to this problem. Spectrum sensing is a crucial function in a CR system. Cooperative spectrum sensing can overcome fading and shadowing effects, and hence increase the reliability of primary user detection. In this paper we consider a system model of a dedicated detect-andforward wireless sensor network (DetF WSN) for cooperative spectrum sensing with k-out-of-n decision fusion in the presence of reporting channels errors. Using this model we consider the design of a spatial reuse media access control (MAC) protocol based on TDMA/OFDMA to resolve conflicts and conserve resources for intra-WSN communication. The influence of the MAC protocol on spectrum sensing performance of the WSN is a key consideration. Two design approaches, using greedy and adaptive simulated annealing (ASA) algorithms, are considered in detail. Performance results assuming a grid network in a Rician fading environment are presented for the two design approaches.
文摘[ Objective] The research aimed to analyze temporal-spatial variation characteristics of the extreme precipitation days over South China from 1961 to 2010. [ Method] Based on the daily precipitation data in meteorological stations over South China, extreme precipitation thresholds were determined according to the percentiles distribution for different stations. Temporal-spatial variation characteristics of the extreme precipitation days over South China were studied by the methods of fuzzy clustering, trend coefficient, wavelet analysis and cross spectrum analysis, etc. [ Re- suit] Four sub-regions were identified over South China. They were respectively Nanling area, west Guangxi area, Coast area and Hainan area. Occurrence seasons of the extreme precipitations in each sub-region were significantly different. Extreme precipitation clays in four sub-regions all had increase trends, and those of Nanling area and Coast area were significant. From wavelet analysis and cress spectrum analysis, there were significant periodic variation characteristics. Extreme precipitation days in each sub-region all had significant same-phase evolution trends at the peri- od of 2 -5 years, but backward time length was different. [ Conclusion] The research provided background materials for forecast and influence as- sessment of the extremely heavy precipitation over South China.
文摘In this work, we present a new method of directly determining Fourier components of the spatial correlation function of the dielectric susceptibility of random medium. The method is based on the analysis of the ratio of the spectrum of the light scattered by the spatial correlation components of the dielectric susceptibility of tissue to the spectrum of light scattered by the randomly distributed scatterers which are independent on the value of the spectrum of the incident light and the direction of the observation. The results may find wide applications in areas such as in biomedical diagnosis.
文摘As a promising solution, virtualization is vigorously developed to eliminate the ossification of traditional Internet infrastructure and enhance the flexibility in sharing the substrate network (SN) resources including computing, storage, bandwidth, etc. With network virtualization, cloud service providers can utilize the shared substrate resources to provision virtual networks (VNs) and facilitate a wide and diverse range of applications. As more and more internet applications migrate to the cloud, the resource efficiency and the survivability of VNs, such as single link failure or large-scale disaster survivability, have become crucial issues. Elastic optical networks have emerged in recent years as a strategy for dealing with the divergence of network application bandwidth needs. The network capacity has been constrained due to the usage of only two multiplexing dimensions. As transmission rates rise, so does the demand for network failure protection. Due to their end-to-end solutions, those safe-guarding paths are of particular importance among the protection methods. Due to their end-to-end solutions, those safeguarding paths are of particular importance among the protection methods. This paper presents approaches that provide a failure-independent route-protecting p-cycle for path protection in space-division multiplexed elastic optical networks. This letter looks at two SDM network challenges and presents a heuristic technique (k-shortest path) for each. In the first approach, we study a virtual network embedding (SVNE) problem and propose an algorithm for EONs, which can combat against single-link failures. We evaluate the proposed POPETA algorithm and compare its performance with some counterpart algorithms. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance in terms of spectrum utilization and blocking ratio, even if with a higher backup redundancy ratio.
文摘无人机协同目标感知技术是有人机无人机混合运行的重要安全保障.针对复杂空域环境下的感知可靠性问题,分析大中型无人机的复杂融合空域运行场景,并确定无人机协同目标感知的精准性、高实时性、抗干扰性和低载荷性等需求,提出一种四单元阵列天线和数字化射频体制的无人机协同目标感知系统架构;同时,结合空管雷达信号特性和天线体制,设计方位感知算法,通过修正协方差矩阵、信号子空间加权和噪声子空间加权等方法,设计基于多信号分类(multiple signal classification,MUSIC)的空间谱估计算法,并提出基于子空间分解的幅相误差在线估计算法;最后,开展算法仿真试验和实际空域环境飞行试验.研究结果表明:相比传统MUSIC算法,优化算法的方位感知高分辨性能提升23.3%,并改善了无人机协同目标方位感知的高实时性、抗干扰性和低载荷性.