Marine biodiversity is changing in response to altered physical environment, subsequent ecological changes as well as anthropogenic disturbances. In this study, phytoplankton samples in situ collected in the Bering Se...Marine biodiversity is changing in response to altered physical environment, subsequent ecological changes as well as anthropogenic disturbances. In this study, phytoplankton samples in situ collected in the Bering Sea in July of 1999 and 2010 were analyzed to obtain phytoplankton community structure and spatial-temporal variation between the beginning and end of this decade, and the correlation of phytoplankton community dynamics and environmental factors was investigated. A total of 5 divisions, 58 genera and 153 species of phytoplankton belonging to 3 ecological groups were identified. The vast majority of phytoplankton consisted of diatoms accounting for 66.7% of the total species and 95.2% of the total abundance. Considering differentiation in spatial extent and phytoplankton sample types, there were subtle changes in species composition, large altering in abundance and significant variation in spatial distribution between two surveys. The abundance peak area was located at the Bering Strait while sub peak was found at the Bering Sea Basin. The boreal-temperate diatom was the dominant flora, which was subsequently replaced by eurythermal and frigid-water diatom. Phytoplankton community in the Bering Sea was not a simplex uniform community but composed of deep-ocean assemblage and neritic assemblage. The deep-ocean assemblage was located in the northwestern Pacific Ocean and Bering Sea Basin, dominated by boreal-temperate species(Neodenticula seminae, Thalassiothrix longissima, Amphiprora hyperborean, Chaetoceros atlanticus, Thalassiosira trifulta, etc.) and eurychoric species(Thalassionema nitzschioides, Ch. compressus, Rhizosolenia styliformis, etc.), and characterized by low abundance, even interspecies abundance allocations, diverse dominant species and high species diversity. The neritic assemblage was distributed on the continental shelf and slope of Bering Sea and was mainly composed of frigid-water species(Th.nordenski?ldii, Ch. furcellatus, Ch. socialis, Bacteriosira fragilis, etc.) and eurythermal and euryhaline species(L.danicus, Ch. curvisetus, Coscinodiscus curvatulus, etc.), and it was characterized by high abundance, uneven interspecies allocations, prominent dominant species and low species diversity. Spatial-temporal variation of species composition and abundance of phytoplankton in the Bering Sea was directly controlled by surface circulation,nutrient supply and ice edge.展开更多
In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the...In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the Kuroshio, the South China Sea and the Japan Sea regions are depicted based upon the observations and numerical modeling results. Gene- rally, the lifetime of these oceanic vortices ranges from several weeks to several months, and their horizontal scales vary from tens of kilometers to hundreds of kilometers. Their vertical scales are on the order of thousands of meters. Finally, some theoretical studies, mainly on the splitting of a cyclonic vortex and the merging of anticyclonic vortices, are introduced.展开更多
基金The National Natural Science Foundation of China under contract Nos 41306116 and 41506217the Basic Research of the National Department of Science and Technology under contract No.GASI-01-02-04the Polar Science Strategic Research Foundation of China under contract No.20140309
文摘Marine biodiversity is changing in response to altered physical environment, subsequent ecological changes as well as anthropogenic disturbances. In this study, phytoplankton samples in situ collected in the Bering Sea in July of 1999 and 2010 were analyzed to obtain phytoplankton community structure and spatial-temporal variation between the beginning and end of this decade, and the correlation of phytoplankton community dynamics and environmental factors was investigated. A total of 5 divisions, 58 genera and 153 species of phytoplankton belonging to 3 ecological groups were identified. The vast majority of phytoplankton consisted of diatoms accounting for 66.7% of the total species and 95.2% of the total abundance. Considering differentiation in spatial extent and phytoplankton sample types, there were subtle changes in species composition, large altering in abundance and significant variation in spatial distribution between two surveys. The abundance peak area was located at the Bering Strait while sub peak was found at the Bering Sea Basin. The boreal-temperate diatom was the dominant flora, which was subsequently replaced by eurythermal and frigid-water diatom. Phytoplankton community in the Bering Sea was not a simplex uniform community but composed of deep-ocean assemblage and neritic assemblage. The deep-ocean assemblage was located in the northwestern Pacific Ocean and Bering Sea Basin, dominated by boreal-temperate species(Neodenticula seminae, Thalassiothrix longissima, Amphiprora hyperborean, Chaetoceros atlanticus, Thalassiosira trifulta, etc.) and eurychoric species(Thalassionema nitzschioides, Ch. compressus, Rhizosolenia styliformis, etc.), and characterized by low abundance, even interspecies abundance allocations, diverse dominant species and high species diversity. The neritic assemblage was distributed on the continental shelf and slope of Bering Sea and was mainly composed of frigid-water species(Th.nordenski?ldii, Ch. furcellatus, Ch. socialis, Bacteriosira fragilis, etc.) and eurythermal and euryhaline species(L.danicus, Ch. curvisetus, Coscinodiscus curvatulus, etc.), and it was characterized by high abundance, uneven interspecies allocations, prominent dominant species and low species diversity. Spatial-temporal variation of species composition and abundance of phytoplankton in the Bering Sea was directly controlled by surface circulation,nutrient supply and ice edge.
基金partly supported by the National Natural Science Foundation of China(project No.49976010 and G1999043807)as well as by the Laboratory for Tropical Marine Environmental Dynamics(LED)of the South China Sea Institute of Oceanology
文摘In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the Kuroshio, the South China Sea and the Japan Sea regions are depicted based upon the observations and numerical modeling results. Gene- rally, the lifetime of these oceanic vortices ranges from several weeks to several months, and their horizontal scales vary from tens of kilometers to hundreds of kilometers. Their vertical scales are on the order of thousands of meters. Finally, some theoretical studies, mainly on the splitting of a cyclonic vortex and the merging of anticyclonic vortices, are introduced.