期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sparse three-dimensional imaging for forward-looking array SAR using spatial continuity
1
作者 LIU Xiangyang ZHANG Bingpeng +1 位作者 CAO Wei XIE Wenjia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期417-424,共8页
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ... For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR. 展开更多
关键词 forward-looking array synthetic aperture radar(FASAR) sparse three-dimensional imaging compressed sensing(CS) spatial continuity
下载PDF
A CRPS-Based Spatial Technique for the Verification of Ensemble Precipitation Forecasts
2
作者 ZHAO Bin ZHANG Bo LI Zi-liang 《Journal of Tropical Meteorology》 SCIE 2021年第1期24-33,共10页
Traditional precipitation skill scores are affected by the well-known"double penalty"problem caused by the slight spatial or temporal mismatches between forecasts and observations.The fuzzy(neighborhood)meth... Traditional precipitation skill scores are affected by the well-known"double penalty"problem caused by the slight spatial or temporal mismatches between forecasts and observations.The fuzzy(neighborhood)method has been proposed for deterministic simulations and shown some ability to solve this problem.The increasing resolution of ensemble forecasts of precipitation means that they now have similar problems as deterministic forecasts.We developed an ensemble precipitation verification skill score,i.e.,the Spatial Continuous Ranked Probability Score(SCRPS),and used it to extend spatial verification from deterministic into ensemble forecasts.The SCRPS is a spatial technique based on the Continuous Ranked Probability Score(CRPS)and the fuzzy method.A fast binomial random variation generator was used to obtain random indexes based on the climatological mean observed frequency,which were then used in the reference score to calculate the skill score of the SCRPS.The verification results obtained using daily forecast products from the ECMWF ensemble forecasts and quantitative precipitation estimation products from the OPERA datasets during June-August 2018 shows that the spatial score is not affected by the number of ensemble forecast members and that a consistent assessment can be obtained.The score can reflect the performance of ensemble forecasts in modeling precipitation and thus can be widely used. 展开更多
关键词 ECMWF ensemble forecasts spatial Continuous Ranked Probability Score(SCRPS) traditional skill score consistent assessment OPERA quantitative precipitation estimation datasets
下载PDF
Inversion-based attenuation compensation with dip constraint 被引量:2
3
作者 Xiong Ma Li-Li Huo +2 位作者 Guo-Fa Li Hao Li Qing-Long Meng 《Petroleum Science》 SCIE CAS CSCD 2022年第2期543-553,共11页
Instability is an inherent problem with the attenuation compensation methods and has been partially relieved by using the inverse scheme.However,the conventional inversion-based attenuation compensation approaches ign... Instability is an inherent problem with the attenuation compensation methods and has been partially relieved by using the inverse scheme.However,the conventional inversion-based attenuation compensation approaches ignore the important prior information of the seismic dip.Thus,the compensated result appears to be distorted spatial continuity and has a low signal-to-noise ratio(S/N).To alleviate this issue,we have incorporated the seismic dip information into the inversion framework and have developed a dip-constrained attenuation compensation(DCAC)algorithm.The seismic dip information,calculated from the poststack seismic data,is the key to construct a dip constraint term.Benefiting from the introduction of the seismic dip constraint,the DCAC approach maintains the numerical stability and preserves the spatial continuity of the compensated result.Synthetic and field data examples demonstrate that the proposed method can not only improve seismic resolution,but also protect the continuity of seismic data. 展开更多
关键词 Attenuation compensation INSTABILITY Inverse scheme Seismic dip Seismic resolution spatial continuity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部