Since creation of spatial data is a costly and time consuming process, researchers, in this domain, in most of the cases rely on open source spatial attributes for their specific purpose. Likewise, the present researc...Since creation of spatial data is a costly and time consuming process, researchers, in this domain, in most of the cases rely on open source spatial attributes for their specific purpose. Likewise, the present research aims at mapping landslide susceptibility at the metropolitan area of Chittagong district of Bangladesh utilizing obtainable open source spatial data from various web portals. In this regard, we targeted a study region where rainfall induced landslides reportedly causes causalities as well as property damage each year. In this study, however, we employed multi-criteria evaluation (MCE) technique i.e., heuristic, a knowledge driven approach based on expert opinions from various discipline for landslide susceptibility mapping combining nine causative factors—geomorphology, geology, land use/land cover (LULC), slope, aspect, plan curvature, drainage distance, relative relief and vegetation in geographic information system (GIS) environment. The final susceptibility map was devised into five hazard classes viz., very low, low, moderate, high, and very high, representing 22 km2 (13%), 90 km2 (53%);24 km2 (15%);22 km2 (13%) and 10 km2 (6%) areas respectively. This particular study might be beneficial to the local authorities and other stake-holders, concerned in disaster risk reduction and mitigation activities. Moreover this study can also be advantageous for risk sensitive land use planning in the study area.展开更多
The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study...The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study area laid on the lower part of the Attanagalu Oya river basin. As the geospatial tools, OpenStreetMap (OSM), Java OpenStreetMap (JOSM), QGIS, GPS Essentials, and Open Map Kit (OMK) are used. The elements of disaster exposure, including the number of people or types of assets, are surveyed and inventoried using the OSM platforms. Local, national, and international agencies produce and evaluate the data. The study developed spatial data for building footprints of 165,000 households, street lengths of 2300 km, hospital units of 16, and utility units of 2300. This could overcome the main challenges of exposure mapping in the area. The procedure developed in the exposure mapping can be used in a data-sparse environment. Exposure mapping is generally used to estimate the impact of hazards or disasters, which are essential in effective disaster management. How are there still remaining challenges in disaster exposure mapping such as less awareness about the mapping procedure, lack of government support, internet access, hardware, and inability to understand the value of exposure mapping?展开更多
Open-source and free tools are readily available to the public to process data and assist producers in making management decisions related to agricultural landscapes. On-the-go soil sensors are being used as a proxy t...Open-source and free tools are readily available to the public to process data and assist producers in making management decisions related to agricultural landscapes. On-the-go soil sensors are being used as a proxy to develop digital soil maps because of the data they can collect and their ability to cover a large area quickly. Machine learning, a subcomponent of artificial intelligence, makes predictions from data. Intermixing open-source tools, on-the-go sensor technologies, and machine learning may improve Mississippi soil mapping and crop production. This study aimed to evaluate machine learning for mapping apparent soil electrical conductivity (EC<sub>a</sub>) collected with an on-the-go sensor system at two sites (i.e., MF2, MF9) on a research farm in Mississippi. Machine learning tools (support vector machine) incorporated in Smart-Map, an open-source application, were used to evaluate the sites and derive the apparent electrical conductivity maps. Autocorrelation of the shallow (EC<sub>as</sub>) and deep (EC<sub>ad</sub>) readings was statistically significant at both locations (Moran’s I, p 0.001);however, the spatial correlation was greater at MF2. According to the leave-one-out cross-validation results, the best models were developed for EC<sub>as</sub> versus EC<sub>ad</sub>. Spatial patterns were observed for the EC<sub>as</sub> and EC<sub>ad</sub> readings in both fields. The patterns observed for the EC<sub>ad</sub> readings were more distinct than the EC<sub>as</sub> measurements. The research results indicated that machine learning was valuable for deriving apparent electrical conductivity maps in two Mississippi fields. Location and depth played a role in the machine learner’s ability to develop maps.展开更多
文摘Since creation of spatial data is a costly and time consuming process, researchers, in this domain, in most of the cases rely on open source spatial attributes for their specific purpose. Likewise, the present research aims at mapping landslide susceptibility at the metropolitan area of Chittagong district of Bangladesh utilizing obtainable open source spatial data from various web portals. In this regard, we targeted a study region where rainfall induced landslides reportedly causes causalities as well as property damage each year. In this study, however, we employed multi-criteria evaluation (MCE) technique i.e., heuristic, a knowledge driven approach based on expert opinions from various discipline for landslide susceptibility mapping combining nine causative factors—geomorphology, geology, land use/land cover (LULC), slope, aspect, plan curvature, drainage distance, relative relief and vegetation in geographic information system (GIS) environment. The final susceptibility map was devised into five hazard classes viz., very low, low, moderate, high, and very high, representing 22 km2 (13%), 90 km2 (53%);24 km2 (15%);22 km2 (13%) and 10 km2 (6%) areas respectively. This particular study might be beneficial to the local authorities and other stake-holders, concerned in disaster risk reduction and mitigation activities. Moreover this study can also be advantageous for risk sensitive land use planning in the study area.
文摘The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study area laid on the lower part of the Attanagalu Oya river basin. As the geospatial tools, OpenStreetMap (OSM), Java OpenStreetMap (JOSM), QGIS, GPS Essentials, and Open Map Kit (OMK) are used. The elements of disaster exposure, including the number of people or types of assets, are surveyed and inventoried using the OSM platforms. Local, national, and international agencies produce and evaluate the data. The study developed spatial data for building footprints of 165,000 households, street lengths of 2300 km, hospital units of 16, and utility units of 2300. This could overcome the main challenges of exposure mapping in the area. The procedure developed in the exposure mapping can be used in a data-sparse environment. Exposure mapping is generally used to estimate the impact of hazards or disasters, which are essential in effective disaster management. How are there still remaining challenges in disaster exposure mapping such as less awareness about the mapping procedure, lack of government support, internet access, hardware, and inability to understand the value of exposure mapping?
文摘Open-source and free tools are readily available to the public to process data and assist producers in making management decisions related to agricultural landscapes. On-the-go soil sensors are being used as a proxy to develop digital soil maps because of the data they can collect and their ability to cover a large area quickly. Machine learning, a subcomponent of artificial intelligence, makes predictions from data. Intermixing open-source tools, on-the-go sensor technologies, and machine learning may improve Mississippi soil mapping and crop production. This study aimed to evaluate machine learning for mapping apparent soil electrical conductivity (EC<sub>a</sub>) collected with an on-the-go sensor system at two sites (i.e., MF2, MF9) on a research farm in Mississippi. Machine learning tools (support vector machine) incorporated in Smart-Map, an open-source application, were used to evaluate the sites and derive the apparent electrical conductivity maps. Autocorrelation of the shallow (EC<sub>as</sub>) and deep (EC<sub>ad</sub>) readings was statistically significant at both locations (Moran’s I, p 0.001);however, the spatial correlation was greater at MF2. According to the leave-one-out cross-validation results, the best models were developed for EC<sub>as</sub> versus EC<sub>ad</sub>. Spatial patterns were observed for the EC<sub>as</sub> and EC<sub>ad</sub> readings in both fields. The patterns observed for the EC<sub>ad</sub> readings were more distinct than the EC<sub>as</sub> measurements. The research results indicated that machine learning was valuable for deriving apparent electrical conductivity maps in two Mississippi fields. Location and depth played a role in the machine learner’s ability to develop maps.