The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum...The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.展开更多
According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinemat...According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinematics formula of the parallel mechanism are presented.Through parting the spherical joints of the active sub-chains and using the force and momentequilibrium of both the active sub-chains and passive sub-chain, the constraint forces acting on theparted joints are determined. Subsequently, the analytic expressions of the actuator driving forcesare derived by means of the force equilibrium of the upper links of active sub-chains.展开更多
Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section ar...Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired.展开更多
Forward kinematics analysis of a novel 5-DOF parallel mechanism using tetrahedron configurations is presented. Such mechanism is suitable to many tasks requiring less than 6 DOFs. It consists of a movable platform con...Forward kinematics analysis of a novel 5-DOF parallel mechanism using tetrahedron configurations is presented. Such mechanism is suitable to many tasks requiring less than 6 DOFs. It consists of a movable platform connected to the base by five identical 6-DOF active limbs plus one active limb with its DOF being exactly the same as the specified DOF of the movable platform, which leads to its legs' topology 4-UPS/UPU. Based on the tetmhedron geometry, both closed-form solution with an extra sensor and numerical method using iterative algorithm are employed to obtain the forward kinematics solutions of the mechanism. Compared with the conventional methods, the proposed closed-form solution has the advantages in automatically avoiding unnecessary complex roots and getting a unique solution for the forward kinematics. Finally, an example shows that the proposed numerical algorithm is so effective that it enables a real-time forward kinematics solution to be achieved and the initial value can be chosen easily.展开更多
Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spheric...Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spherical joint clearance in spatial parallel mechanism. In this paper, a general method is proposed for establishing dynamic equations of spatial parallel mechanism with spatial spherical clearance by Lagrange multiplier method. The kinematic model and contact force model of the spherical joint clearance were established successively. Lagrange multiplier method was used to deduce the dynamics equation of 4 UPS-UPU mechanism with spherical clearance joint systematically. The influence of friction coefficient on dynamics response of 4 UPS-UPU mechanism with spherical clearance joint was analyzed. Non-linear characteristics of clearance joint and moving platform were analyzed by Poincare map, phase diagram, and bifurcation diagram. The results show that variation of friction coefficient and clearance value had little effect on stability of the mechanism, but the chaotic phenomenon was found at spherical clearance joint. The research has theoretical guiding significance for improving the dynamic performance and avoiding of chaos of parallel mechanisms including spherical joint clearance.展开更多
Two kinds of 2-dof parallel mechanisms are proposed in this paper which can be used as the actuator for the plane sprayer. The direct and inverse kinematics solutions of the two kinds of mechanisms are derived on the ...Two kinds of 2-dof parallel mechanisms are proposed in this paper which can be used as the actuator for the plane sprayer. The direct and inverse kinematics solutions of the two kinds of mechanisms are derived on the end operating point and two workspaces are analyzed and compared. The kinematics models of the end operating point of two mechanisms are simulated by Matlab examples obtaining variation of kinematics parameters of these two mechanisms. The research of this paper provides the basis for the selection of mechanism, trajectory planning of the end operating point on the sprayer and often some practical value for trajectory analysis and structure design of the plane sprayer.展开更多
The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3...The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3-DOF PM-KR)and the influence of redundant parts on the PM-KR are analyzed.Firstly,the kinematics model of the PM-KR is established.The inverse solutions,the Jacobian matrix,and the workspace of the PM-KR are solved.Secondly,the influence of redundancy on the PM-KR is analyzed.Since there exists kinematic redundancy,the PM-KR possesses fault-tolerant performance.By locking one actuating joint or two actuating joints simultaneously,the fault-tolerant workspace is obtained.When the position of the redundant part is changed,the workspace and singularity will be changed.The results show that kinematic redundancy can be used to avoid singularity.Finally,the simulations are performed to prove the theoretical analysis.展开更多
The displacement, velocity and acceleration analysis of the general spatial 7R mechanism is discussed in this paper, fused on the method proposed in Ref. [2], an input-output algebra equation of the 16th degree in the...The displacement, velocity and acceleration analysis of the general spatial 7R mechanism is discussed in this paper, fused on the method proposed in Ref. [2], an input-output algebra equation of the 16th degree in the tan-half-angle of the output angular displacement is derived. The derivation process and computation are considerably simple. A program written in Allanguage is used to derive the coefficients of displacement equations: therefore the amount of manual work is greatly decreased. The results are verified by a numerical example. The researches of this paper and Ref. [5]found a base for establishing an expert system of spatial mechanism analysis in the future.展开更多
The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and recip...The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.展开更多
A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Base...A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Based on its topologic structure, a coordinate system for position analysis is set-up and the forward kinematic solutions are analyzed. It was found that the parallel mechanism is partially decoupled. The relationship between original errors and position-stance error of moving platform is built according to the complete differential-coefficient theory. Then we present a special example with theory values and errors to evaluate the error model, and numerical error solutions are gained. The investigations concentrating on mechanism errors and actuator errors show that the mechanism errors have more influences on the position-stance of the moving platform. It is demonstrated that improving manufacturing and assembly techniques can greatly reduce the moving platform error. The small change in position-stance error in different kinematic positions proves that the error-compensation of software can improve considerably the precision of parallel mechanism.展开更多
Although the parallel mechanisms have the advantages of high accuracy, velocity, stiffness, and payload capacity, the shortcomings of the space utilization and workspace limit the applications in the confined space. A...Although the parallel mechanisms have the advantages of high accuracy, velocity, stiffness, and payload capacity, the shortcomings of the space utilization and workspace limit the applications in the confined space. A novel 3 degrees of freedom spatial parallel manipulator 3-PSR-O(prismatic-spherical-revolute) is proposed, which possesses a compact architecture and extended workspace while maintaining the inherent advantages of the parallel mechanisms. The direct-inverse position, singularity and workspace are investigated. The mapping method is adopted in the position analysis, and the closed form solution is derived in the form of a six order equation. The singularity analysis of the mechanism is also carried out based on the geometrical constraints, including six singularity boundaries. A feature boundary, which is independent of the prismatic joints' stroke limit, is obtained by integrating the six singularity boundaries. According to the formation of the reachable workspace, a concept of basic workspace is also introduced and presented in the analytical way. By demarcating the basic workspace along the central height with the feature boundary, the reachable workspace can be derived and analyzed more efficiently. Finally, a comparative study on the space utilization between the 3-PSP parallel mechanism and the new mechanism is also presented. The area of feature boundary of the new mechanism is about 140% of the 3-PSP parallel mechanism, while its installation radius is only 1/2 of the 3-PSP parallel mechanism. The proposed parallel mechanism shows great space utilization, and is ideally suited for applications in confined space occasions such as immersion lithography, nano-imprint etc.展开更多
The spatial RSSR crank rocker mechanism is widely used in industry, but, the manufac-turing, mounting and lubrication of S pair are more complicate than R or C pair. This paperdeals with the replacement of S pair by c...The spatial RSSR crank rocker mechanism is widely used in industry, but, the manufac-turing, mounting and lubrication of S pair are more complicate than R or C pair. This paperdeals with the replacement of S pair by cress-head pair and investigates the equivalence of thetwo mechanisms with output angular displacement and oscillating angle ψ, as the object func-tion. The synthesis in terms of velocity ratio K and ψ and the influence of the cross-headstructure on the replacement have also been discussed.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52075145)S&T Program of Hebei Province of China(Grant Nos.20281805Z,E2020103001)Central Government Guides Basic Research Projects of Local Science and Technology Development Funds of China(Grant No.206Z1801G).
文摘The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.
基金This project is supported by National Natural Science Foundation of China (No.59775006)Postdoctoral Science Foundation of China (No.200031).
文摘According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinematics formula of the parallel mechanism are presented.Through parting the spherical joints of the active sub-chains and using the force and momentequilibrium of both the active sub-chains and passive sub-chain, the constraint forces acting on theparted joints are determined. Subsequently, the analytic expressions of the actuator driving forcesare derived by means of the force equilibrium of the upper links of active sub-chains.
基金This project is supported by National Natural Science Foundation of China (No.60275031)Municipal Key Lab Open Fund of Beijing, China (No.KP01-072200384).
文摘Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired.
文摘Forward kinematics analysis of a novel 5-DOF parallel mechanism using tetrahedron configurations is presented. Such mechanism is suitable to many tasks requiring less than 6 DOFs. It consists of a movable platform connected to the base by five identical 6-DOF active limbs plus one active limb with its DOF being exactly the same as the specified DOF of the movable platform, which leads to its legs' topology 4-UPS/UPU. Based on the tetmhedron geometry, both closed-form solution with an extra sensor and numerical method using iterative algorithm are employed to obtain the forward kinematics solutions of the mechanism. Compared with the conventional methods, the proposed closed-form solution has the advantages in automatically avoiding unnecessary complex roots and getting a unique solution for the forward kinematics. Finally, an example shows that the proposed numerical algorithm is so effective that it enables a real-time forward kinematics solution to be achieved and the initial value can be chosen easily.
基金Sponsored by the Natural Science Foundation of Shandong Province(Grand No.ZR2017MEE066)the Shandong Key Research and Development Public Welfare Program(2019GGX104001)。
文摘Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spherical joint clearance in spatial parallel mechanism. In this paper, a general method is proposed for establishing dynamic equations of spatial parallel mechanism with spatial spherical clearance by Lagrange multiplier method. The kinematic model and contact force model of the spherical joint clearance were established successively. Lagrange multiplier method was used to deduce the dynamics equation of 4 UPS-UPU mechanism with spherical clearance joint systematically. The influence of friction coefficient on dynamics response of 4 UPS-UPU mechanism with spherical clearance joint was analyzed. Non-linear characteristics of clearance joint and moving platform were analyzed by Poincare map, phase diagram, and bifurcation diagram. The results show that variation of friction coefficient and clearance value had little effect on stability of the mechanism, but the chaotic phenomenon was found at spherical clearance joint. The research has theoretical guiding significance for improving the dynamic performance and avoiding of chaos of parallel mechanisms including spherical joint clearance.
文摘Two kinds of 2-dof parallel mechanisms are proposed in this paper which can be used as the actuator for the plane sprayer. The direct and inverse kinematics solutions of the two kinds of mechanisms are derived on the end operating point and two workspaces are analyzed and compared. The kinematics models of the end operating point of two mechanisms are simulated by Matlab examples obtaining variation of kinematics parameters of these two mechanisms. The research of this paper provides the basis for the selection of mechanism, trajectory planning of the end operating point on the sprayer and often some practical value for trajectory analysis and structure design of the plane sprayer.
基金Fundamental Research Funds for the Central Universities(Grant No.2022JBZX025)Natural Science Foundation of Hebei Province(Grant No.E2022105029)National Natural Science Foundation of China(Grant No.51875033).
文摘The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3-DOF PM-KR)and the influence of redundant parts on the PM-KR are analyzed.Firstly,the kinematics model of the PM-KR is established.The inverse solutions,the Jacobian matrix,and the workspace of the PM-KR are solved.Secondly,the influence of redundancy on the PM-KR is analyzed.Since there exists kinematic redundancy,the PM-KR possesses fault-tolerant performance.By locking one actuating joint or two actuating joints simultaneously,the fault-tolerant workspace is obtained.When the position of the redundant part is changed,the workspace and singularity will be changed.The results show that kinematic redundancy can be used to avoid singularity.Finally,the simulations are performed to prove the theoretical analysis.
文摘The displacement, velocity and acceleration analysis of the general spatial 7R mechanism is discussed in this paper, fused on the method proposed in Ref. [2], an input-output algebra equation of the 16th degree in the tan-half-angle of the output angular displacement is derived. The derivation process and computation are considerably simple. A program written in Allanguage is used to derive the coefficients of displacement equations: therefore the amount of manual work is greatly decreased. The results are verified by a numerical example. The researches of this paper and Ref. [5]found a base for establishing an expert system of spatial mechanism analysis in the future.
基金Supported by the National Natural Science Foundation of China (50375071)the Jiangsu Province Key Lab on Digital Manufacture Project (HGDML-0604)~~
文摘The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.
基金Preject 50225519 supported by the National Outstanding Youth Science Foundation of China
文摘A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Based on its topologic structure, a coordinate system for position analysis is set-up and the forward kinematic solutions are analyzed. It was found that the parallel mechanism is partially decoupled. The relationship between original errors and position-stance error of moving platform is built according to the complete differential-coefficient theory. Then we present a special example with theory values and errors to evaluate the error model, and numerical error solutions are gained. The investigations concentrating on mechanism errors and actuator errors show that the mechanism errors have more influences on the position-stance of the moving platform. It is demonstrated that improving manufacturing and assembly techniques can greatly reduce the moving platform error. The small change in position-stance error in different kinematic positions proves that the error-compensation of software can improve considerably the precision of parallel mechanism.
基金Supported by National Natural Science Foundation of China(Grant No.51221004)National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA040605)
文摘Although the parallel mechanisms have the advantages of high accuracy, velocity, stiffness, and payload capacity, the shortcomings of the space utilization and workspace limit the applications in the confined space. A novel 3 degrees of freedom spatial parallel manipulator 3-PSR-O(prismatic-spherical-revolute) is proposed, which possesses a compact architecture and extended workspace while maintaining the inherent advantages of the parallel mechanisms. The direct-inverse position, singularity and workspace are investigated. The mapping method is adopted in the position analysis, and the closed form solution is derived in the form of a six order equation. The singularity analysis of the mechanism is also carried out based on the geometrical constraints, including six singularity boundaries. A feature boundary, which is independent of the prismatic joints' stroke limit, is obtained by integrating the six singularity boundaries. According to the formation of the reachable workspace, a concept of basic workspace is also introduced and presented in the analytical way. By demarcating the basic workspace along the central height with the feature boundary, the reachable workspace can be derived and analyzed more efficiently. Finally, a comparative study on the space utilization between the 3-PSP parallel mechanism and the new mechanism is also presented. The area of feature boundary of the new mechanism is about 140% of the 3-PSP parallel mechanism, while its installation radius is only 1/2 of the 3-PSP parallel mechanism. The proposed parallel mechanism shows great space utilization, and is ideally suited for applications in confined space occasions such as immersion lithography, nano-imprint etc.
文摘The spatial RSSR crank rocker mechanism is widely used in industry, but, the manufac-turing, mounting and lubrication of S pair are more complicate than R or C pair. This paperdeals with the replacement of S pair by cress-head pair and investigates the equivalence of thetwo mechanisms with output angular displacement and oscillating angle ψ, as the object func-tion. The synthesis in terms of velocity ratio K and ψ and the influence of the cross-headstructure on the replacement have also been discussed.