The positive and negative terrains(P-N terrains) widely distributed across China's Loess Plateau constitute the dual structure characteristic of loess landforms. Analysis of loess P-N terrains at the watershed sca...The positive and negative terrains(P-N terrains) widely distributed across China's Loess Plateau constitute the dual structure characteristic of loess landforms. Analysis of loess P-N terrains at the watershed scale can serve to elucidate the structural characteristics and spatial patterns of P-N terrains, which benefits a better understanding of watershed evolution and suitable scales for loess landform research. The Two-Term Local Quadrat Variance Analysis(TTLQV) is calculated as the average of the square of the difference between the block totals of all possible adjacent pairs of block size, which can be used to detect both the scale and the intensity of landscape patches(e.g., plant/animal communities and gully networks). In this study, we determined the latitudinal and longitudinal spatial scale of P-N terrain patterns within 104 uniformly distributed watersheds in our target soil and water conservation region. The results showed that TTLQV is very effective for examining the scale of P-N terrain patterns. There were apparently three types of P-N terrain pattern in latitudinal direction(i.e., Loess Tableland type, Loess Hill type, and Transitional Form between Sand and Loess type), whereas there were both lower and higher values for P-N terrain pattern scales in all loess landforms in the longitudinal direction. The P-N terrain pattern alsoclearly presented anisotropy, suggesting that gully networks in the main direction were well-developed while others were relatively undeveloped. In addition, the relationships between the first scales and controlling factors(i.e., gully density, nibble degree, watershed area, mean watershed slope, NDVI, precipitation, loess thickness, and loess landforms) revealed that the first scales are primarily controlled by watershed area and loess landforms. This may indicate that the current spatial pattern of P-N terrains is characterized by internal force. In selecting suitable study areas in China' Loess Plateau, it is crucial to understand four control variables: the spatial scale of the P-N terrain pattern, the watershed area, the main direction of the watershed, and the loess landforms.展开更多
[Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitatio...[Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of annual precipitation appeared 'North-south type' and 'North-center-south type'.It increased from north to south,the changes of interannual precipitation decreased from north to south.Precipitation changed significantly in month and distributed differently in the Yellow River irrigation area.But it was conversely steady in central arid zone and mountainous area of southern Ningxia.The probability of single abundant precipitation year was higher than single short precipitation year and the continuous short precipitation year was higher than continuous abundant precipitation year.The main cycles were 3a,6a and 10a approximately.In the mid arid zone and the mountainous area of southern Ningxia,the probability of precipitation reduction was about 75% and the Yellow river irrigation area,71.4%,respectively.The reduction in the entire area was about 73.3%.The annual precipitation in the middle arid area and irrigation area was increasing.The variability would change slowly for the intra-annual distribution of precipitation.Especially,the reduction tendency rate in the middle arid area reached 100.0%.[Conclusion] The study provided references for the effective utilization of the local precipitation,and the coordinated development of the regional social economy and ecological environment.展开更多
The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution vers...The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation.展开更多
Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this...Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.展开更多
基金supported by the National Natural Science Foundation of China (NO. 41201464, 41371424)the Fundamental Research Funds for the Central Universities of China (GK201703042)
文摘The positive and negative terrains(P-N terrains) widely distributed across China's Loess Plateau constitute the dual structure characteristic of loess landforms. Analysis of loess P-N terrains at the watershed scale can serve to elucidate the structural characteristics and spatial patterns of P-N terrains, which benefits a better understanding of watershed evolution and suitable scales for loess landform research. The Two-Term Local Quadrat Variance Analysis(TTLQV) is calculated as the average of the square of the difference between the block totals of all possible adjacent pairs of block size, which can be used to detect both the scale and the intensity of landscape patches(e.g., plant/animal communities and gully networks). In this study, we determined the latitudinal and longitudinal spatial scale of P-N terrain patterns within 104 uniformly distributed watersheds in our target soil and water conservation region. The results showed that TTLQV is very effective for examining the scale of P-N terrain patterns. There were apparently three types of P-N terrain pattern in latitudinal direction(i.e., Loess Tableland type, Loess Hill type, and Transitional Form between Sand and Loess type), whereas there were both lower and higher values for P-N terrain pattern scales in all loess landforms in the longitudinal direction. The P-N terrain pattern alsoclearly presented anisotropy, suggesting that gully networks in the main direction were well-developed while others were relatively undeveloped. In addition, the relationships between the first scales and controlling factors(i.e., gully density, nibble degree, watershed area, mean watershed slope, NDVI, precipitation, loess thickness, and loess landforms) revealed that the first scales are primarily controlled by watershed area and loess landforms. This may indicate that the current spatial pattern of P-N terrains is characterized by internal force. In selecting suitable study areas in China' Loess Plateau, it is crucial to understand four control variables: the spatial scale of the P-N terrain pattern, the watershed area, the main direction of the watershed, and the loess landforms.
基金Supported by Ningxia Natural Science Fund (NZ10215)National Science and Technology Planning Project (2011BAD29B07)Ningxia Natural Science Fund (NZ10214)
文摘[Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of annual precipitation appeared 'North-south type' and 'North-center-south type'.It increased from north to south,the changes of interannual precipitation decreased from north to south.Precipitation changed significantly in month and distributed differently in the Yellow River irrigation area.But it was conversely steady in central arid zone and mountainous area of southern Ningxia.The probability of single abundant precipitation year was higher than single short precipitation year and the continuous short precipitation year was higher than continuous abundant precipitation year.The main cycles were 3a,6a and 10a approximately.In the mid arid zone and the mountainous area of southern Ningxia,the probability of precipitation reduction was about 75% and the Yellow river irrigation area,71.4%,respectively.The reduction in the entire area was about 73.3%.The annual precipitation in the middle arid area and irrigation area was increasing.The variability would change slowly for the intra-annual distribution of precipitation.Especially,the reduction tendency rate in the middle arid area reached 100.0%.[Conclusion] The study provided references for the effective utilization of the local precipitation,and the coordinated development of the regional social economy and ecological environment.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 41305069)the Open Project Program of the Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science and Technologythe National Program on Key Basic Research Project of China (Grant No. 2010CB951904)
文摘The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation.
文摘Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.