期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sound Source Localization Based on SRP-PHAT Spatial Spectrum and Deep Neural Network 被引量:3
1
作者 Xiaoyan Zhao Shuwen Chen +1 位作者 Lin Zhou Ying Chen 《Computers, Materials & Continua》 SCIE EI 2020年第7期253-271,共19页
Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transf... Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transform(SRP-PHAT)spatial spectrum as input feature is presented in this paper.Since the SRP-PHAT spatial power spectrum contains spatial location information,it is adopted as the input feature for sound source localization.DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features.SRP-PHAT at each steering position within a frame is arranged into a vector,which is treated as DNN input.A DNN model which can map the SRP-PHAT spatial spectrum to the azimuth of sound source is learned from the training signals.The azimuth of sound source is estimated through trained DNN model from the testing signals.Experiment results demonstrate that the proposed algorithm significantly improves localization performance whether the training and testing condition setup are the same or not,and is more robust to noise and reverberation. 展开更多
关键词 Sound source localization microphone array steered response power-phase transform(SRP-PHAT)spatial spectrum deep neural network
下载PDF
Speech Separation Algorithm Using Gated Recurrent Network Based on Microphone Array
2
作者 Xiaoyan Zhao Lin Zhou +2 位作者 Yue Xie Ying Tong Jingang Shi 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3087-3100,共14页
Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improv... Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improve separation performance.However,speech separation in reverberant noisy environment is still a challenging task.To address this,a novel speech separation algorithm using gate recurrent unit(GRU)network based on microphone array has been proposed in this paper.The main aim of the proposed algorithm is to improve the separation performance and reduce the computational cost.The proposed algorithm extracts the sub-band steered response power-phase transform(SRP-PHAT)weighted by gammatone filter as the speech separation feature due to its discriminative and robust spatial position in formation.Since the GRU net work has the advantage of processing time series data with faster training speed and fewer training parameters,the GRU model is adopted to process the separation featuresof several sequential frames in the same sub-band to estimate the ideal Ratio Masking(IRM).The proposed algorithm decomposes the mixture signals into time-frequency(TF)units using gammatone filter bank in the frequency domain,and the target speech is reconstructed in the frequency domain by masking the mixture signal according to the estimated IRM.The operations of decomposing the mixture signal and reconstructing the target signal are completed in the frequency domain which can reduce the total computational cost.Experimental results demonstrate that the proposed algorithm realizes omnidirectional speech sep-aration in noisy and reverberant environments,provides good performance in terms of speech quality and intelligibility,and has the generalization capacity to reverberate. 展开更多
关键词 Microphone array speech separation gate recurrent unit network gammatone sub-band steered response power-phase transform spatial spectrum
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部