期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于空谱初始化的非负矩阵光谱混合像元盲分解 被引量:1
1
作者 郭宇柏 卓莉 +2 位作者 陶海燕 曹晶晶 王芳 《遥感技术与应用》 CSCD 北大核心 2018年第2期216-226,共11页
混合像元分解是提高遥感监测能力的有效方法之一,因此一直以来是遥感领域的重要研究内容。非负矩阵盲分解(Non-negative Matrix Factorization,NMF)方法无需监督选择端元,无需假定纯像元存在,且能同步获取优化的端元光谱与端元丰度,从... 混合像元分解是提高遥感监测能力的有效方法之一,因此一直以来是遥感领域的重要研究内容。非负矩阵盲分解(Non-negative Matrix Factorization,NMF)方法无需监督选择端元,无需假定纯像元存在,且能同步获取优化的端元光谱与端元丰度,从而为先验知识不足、高度混合场景下的混合像元分解提供了不错的选择,因此成为高光谱混合像元分解方法的重要分支之一。但NMF易陷入局部最优,若直接应用于混合像元解混难以获取稳定的最优解,从而影响了NMF在光谱混合分解的推广应用。针对这一问题,提出一种利用空谱预处理(SSPP)改进NMF的混合像元分解方法(SSPP-NMF)。首先利用SSPP算法结合空间和光谱信息筛选出合理有效的数据子集;然后用NMF算法对筛选出的数据子集进行混合像元分解,获取具有空间均匀性和光谱纯净性的端元光谱;最后基于上一步获取端元光谱利用非负最小二乘法(NNLS)获取整个研究区的最终端元丰度。为检验该方法的有效性和适用性,分别采用模拟仿真数据和真实遥感影像分析了SSPP对NMF的改善效果,并与ATGP-NMF、MVC-NMF两种基于初始化改进NMF的方法进行了比较分析,结果表明:相比ATGP-NMF、MVC-NMF而言,SSPP算法更能有效抑制噪声的影响,明显地提高NMF分解效果,并且具有较高的时间效率。 展开更多
关键词 高光谱遥感 盲分解 空谱初始化 非负矩阵分解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部