Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 k...Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%.展开更多
The variation of the atmospheric Carbon Dioxide (CO2) concentration plays an important role in global cli- mate and agriculture. We analyzed the spatial-temporal characteristics of CO2 in the China region and around...The variation of the atmospheric Carbon Dioxide (CO2) concentration plays an important role in global cli- mate and agriculture. We analyzed the spatial-temporal characteristics of CO2 in the China region and around the globe with the CO2 column mixing ratios observed by the Japanese GOSAT satellite (Greenhouse Gases Observing Satellite). In order to make sure that the accuracy of the CO2 data retrieved by the satellite meets the needs of the climate charac- teristics analyses, we ran a validation on the CO2 column mixing ratios retrieved by the satellite against the ground-based TCCON (Total Carbon Column Observing Network) observation data. The result shows that the two sets of data have a correlation coefficient of higher than 0.7, and a bias of within 2.2 ppmv. Therefore, the GOSAT CO2 da- ta can be used for the climate characteristics analysis of global CO2. Our analysis on the spatial-temporal characteristics of the CO2 column mixing ratios observed during the period of June 2009 through January 2014 proved that, with the impact of the natural emission of near ground CO2 and human activities, the global CO2 concentration has a significant latitudinal characteristics with its highest level averaging 390 oomv in the 0-40?N latitudinal zone in the Northern Hemisphere, and 387 ppmv in the Southern Hemisphere. China has a relatively higher CO2 concentration with the highest level exceeding 398 ppmv, and the eastern area higher than the western area. The variation of global CO2 concentration shows a seasonal pattern, i.e. the CO2 concen- tration reaches its highest in spring in the Northern Hemisphere averaging more than 392 ppmv, second highest in win- ter, and lowest in summer averaging less than 387 ppmv. It fluctuates the most in the Northern Hemisphere with an av- erage concentration of 392.5 ppmv in April, and 385.5 ppmv in July. While in the Southern Hemisphere, the seasonal fluctuation is smaller with the highest concentration occurring in July. Over the recent years, the global CO2 concentra- tion has shown an elevating trend with an average annual increase rate of 1.58 ppmv per year. It is a challenge that the human kind has to face to slow down the increase of the CO2 concentration.展开更多
Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the a...Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area.However,information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited.This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method,and the path analysis was used to clarify the impact of temperature(T),precipitation(P),actual evapotranspiration(ETa),wind speed(W)and sunshine duration(S)on RH.The results demonstrated that climatic conditions in North Xinjiang(NXJ)was more humid than those in Hexi Corridor(HXC)and South Xinjiang(SXJ).RH had a less significant downtrend in NXJ than that in HXC,but an increasingly rising trend was observed in SXJ during the last five decades,implying that HXC and NXJ were under the process of droughts,while SXJ was getting wetter.There was a turning point for the trend of RH in Xinjiang,which occurred in 2000.Path analysis indicated that RH was negatively correlated to T,ETa,W and S,but it increased with increase of P.S,T and W had the greatest direct effects on RH in HXC,NXJ and SXJ,respectively.ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ,while T was the dominant factor in SXJ.展开更多
[Objective] The aim was to study the temporal and spatial characteristics and causes of cold wave in Qinhuangdao.[Method] Based on temperature data from five surface meteorological stations in Qinhuangdao from 1970 to...[Objective] The aim was to study the temporal and spatial characteristics and causes of cold wave in Qinhuangdao.[Method] Based on temperature data from five surface meteorological stations in Qinhuangdao from 1970 to 2009 and the latest standards issuing cold wave early warning signal,statistical analysis on the temporal and spatial distribution of cold wave was carried out,and the causes were discussed preliminarily.[Result] From 1970 to 2009,the frequencies of blue and yellow cold wave in Qinhuangdao region were 2 334 and 105 times respectively,and cold wave occurred most frequently in Qinglong County and least frequently in Lulong County,which was related to the effects of underlying surface,latitude and altitude.Cold wave might happen from September to next May,and the earliest occurrence date was September 9,while the latest end date was May 26.In addition,the frequency of cold wave was the highest in January and lowest in May.From 1970 to 2009,blue cold wave occurred most frequently in 1972 and 1979 and least frequently in 1984,while the frequency of yellow cold wave was the highest in 1979 and lowest in 9 years.From decadal variation,cold wave appeared most frequently in the 1970s and least frequently in the 1990s.With the increase of temperature,the frequency of cold wave showed decrease trend,and the beginning date tended to postpone,while its end date advanced,and it showed that the changes of cold wave was mainly caused by climate warming.[Conclusion] The study could provide theoretical guidance for the meteorological disaster prevention and reduction and local agricultural service.展开更多
Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-langu...Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.展开更多
Drought is the most widespread and insidious natural hazard, presenting serious challenges to ecosystems and human society. The daily Standardized Precipitation Evapotranspiration Index(SPEI) has been developed to ide...Drought is the most widespread and insidious natural hazard, presenting serious challenges to ecosystems and human society. The daily Standardized Precipitation Evapotranspiration Index(SPEI) has been developed to identify the regional spatiotemporal characteristics of drought conditions from 1960 to 2016, revealing the variability in drought characteristics across Southwest China. Daily data from142 meteorological stations across the region were used to calculate the daily SPEI at the annual and seasonal time scale. The Mann-Kendall test and the trend statistics were then applied to quantify the significance of drought trends, with the following results. 1) The regionally averaged intensity and duration of all-drought and severe drought showed increasing trends, while the intensity and duration of extreme drought exhibited decreasing trends. 2) Mixed(increasing/decreasing) trends were detected, in terms of intensity and duration, in the three types of drought events. In general, no evidence of significant trends(P < 0.05) was detected in the drought intensity and duration over the last 55 years at the annual timescale. Seasonally, spring was characterized by a severe drought trend for all drought and severe drought conditions, while extreme drought events in spring and summer were very severe. All drought intensities and durations showed an increasing trend across most regions, except in the northwestern parts of Sichuan Province. However, the areal extent of regions suffering increasing trends in severe and extreme drought became relatively smaller. 3) We identified the following drought hotspots: Guangxi Zhuang Autonomous Region from the 1960 s to the 1990 s, respectively. Guangxi Zhuang Autonomous Region and Guizhou Province in the 1970 s and 1980 s, and Yunnan Province in the 2000 s. Finally, this paper can benefit operational drought characterization with a day-to-day drought monitoring index, enabling a more risk-based drought management strategy in the context of global warming.展开更多
In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of...In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.展开更多
Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissi...Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.展开更多
This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator ca...This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator can obtain a high heat transfer rate with minimalpressure drop penalty. The simulations were carried out to understand the physicalbehavior of this kind of mesoscale heat enhancement component. By visualizing the heat transfer and flow characteristics, it is found that the swirlflow is induced by swirlgenerator in the circular tube couples with the impinging jet effect. After passing through the swirlgenerator, the localfriction factor of liquid can quickly return to lower levelmore quickly, while the localNusselt number maintains higher values for a distance; thus, the evaluation criterion of localperformance is improved. Single-factor optimization is used for three geometric parameters, i.e., the angle of swirlgenerator(25o, 45o, and 60o), the length of swirlgenerator(0.005, 0.01, and 0.02 m), and the center rod radius(1, 2, and 3 mm). The optimum parameters of the swirlgenerator for laminar flow of air in a circular tube are obtained, which should be 60o, 0.005 m, and 3 mm, respectively.展开更多
Although China’s urban floating population is mainly concentrated in developed cities,from the central and western cities to the eastern developed cities,but the characteristics of the floating population in differen...Although China’s urban floating population is mainly concentrated in developed cities,from the central and western cities to the eastern developed cities,but the characteristics of the floating population in different cities are significantly different.This paper systematically investigates the spatiotemporal characteristics and influencing factors of the floating population in different levels of cities.The results show that the regional imbalance to further strengthen,accumulation and dispersion trend has become increasingly obvious,liquidity is positively correlated and city level scale,and urban agglomeration and the core city is still polarization center of floating population.Flow range is closely related to urban hierarchy:the higher the intra-urban grade,the more tend to inter-provincial flow;the lower the city grade,the more tend to intra-urban mobility.Short-term(1-2 years)and long-term(more than 7 years)flow-time coexist.The short-term liquidity increases with the city grade,and the long-term liquidity decreases with the city level.Farmers are still the main body of the floating population.Younger age,lower education level,low-skilled,high gender ratio employees are the most basic demographic characteristics of the floating population,although there are differences between different cities.The main reason for affecting the floating population is seeking jobs and doing business.展开更多
Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on th...Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on the improved Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)mode,this study identifies and evaluates the LUMFs in the China-Vietnam border area between 2000 and 2018 from the perspectives of agricultural production,social security,ecological service,landscape recreation,and national security.The results show that:1)The comprehensive land use functions in most counties and cities continued to be improved.2)The comprehensive land use function exhibits remarkable spatial divergence and aggregation characteristics.The high-value area of the agricultural production function and social security function evolves from the east to the west.In addition,the spatial evolution of ecological service function is complicated,without an obvious spatial divergence and aggregation pattern.The landscape recreation function shows different spatial differentiation characteristics in the early and middle stage,and forms a large cluster in the later stage.Finally,the spatial evolution pattern of the national security function is significant.3)Designing differentiated border land policies,improving border land use security,and establishing a long-term mechanism for ecological protection and ecological compensation can aid in optimizing the LUMF level in the border area.展开更多
Haze pollution has become a severe environmental problem in the daily life of the people in China. PM2.s makes a significant contribution to poor air quality. The spatio-temporal features of China's PM2.s concentrati...Haze pollution has become a severe environmental problem in the daily life of the people in China. PM2.s makes a significant contribution to poor air quality. The spatio-temporal features of China's PM2.s concentrations should be investigated. This paper, based on ob- served data from 945 newly located monitoring sites in 2014 and industrial working population data obtained from International Standard Industrial Classification (ISIC), reveals the spa- tio-temporal variations of PM2.5 concentrations in China and the correlations among different industries. We tested the spatial autocorrelation of PM2.5 concentrations in the cities of China with the spatial autocorrelation model. A correlation coefficient to examine the correlativity of PM2.5 concentrations and 23 characteristic variables for 190 cities in China in 2014, from which the most important ones were chosen, and then a regression model was built to further reveal the social and economic factors affecting PMg.g concentrations. Results: (1) The Hu Huanyong Line and the Yangtze River were the E-W divide and S-N divide between high and low values of China. (2) The PM2.5 concentrations shows great seasonal variation, which is high in autumn and winter but low in spring and summer. The monthly average shows a U-shaped pattern, and daily average presents a periodic and impulse-shaped change. (3) PM2.5 concentrations had a distinct characteristic of spatial agglomeration. The North China Plain was the predominant region of agglomeration, and the southeastern coastal area had stable good air quality.展开更多
As one of the areas with numerous lakes on the Tibetan Plateau, the Hoh Xil region plays an extremely important role in the fragile plateau eco-environment. Based on topographic maps in the 1970s and Landsat TM/ETM+ ...As one of the areas with numerous lakes on the Tibetan Plateau, the Hoh Xil region plays an extremely important role in the fragile plateau eco-environment. Based on topographic maps in the 1970s and Landsat TM/ETM+ remote sensing images iin the 1990s and the period from 2000 to 2011, the data of 83 lakes with an area above 10 km2 each were obtained by digitization method and artificial visual interpretation technology, and the causes for lake variations were also analyzed. Some conclusions can be drawn as follows. (1) From the 1970s to 2011, the lakes in the Hoh Xil region firstly shrank and then expanded, in particular, the area of lakes generally decreased during the 1970s-1990s. Then the lakes expanded from the 1990s to 2000 and the area was slightly higher than that in the 1970s. The area of lakes dramatically increased after 2000. (2) From 2000 to 2011, the lakes with different area ranks in the Hoh Xil region showed an overall expansion trend. Meanwhile, some regional differences were also discovered. Most of the lakes expanded and were widely distributed in the northern, central and western parts of the region. Some lakes were merged together or overflowed due to their rapid expansion. A small number of lakes with the trend of area decrease or strong fluctuation were scattered in the central and southern parts of the study area. And their variations were related to their own supply conditions or hydraulic connection with the downstream lakes or rivers. (3) The increase in precipitation was the dominant factor resulting in the expansion of lakes in the Hoh Xil region. The secondary factor was the increase in meltwater from glaciers and frozen soil due to climate warming.展开更多
In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is import...In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is important to obtain accurate dynamic information on the spatial and temporal patterns of carbon emissions and carbon footprints to support formulating effective national carbon emission reduction policies.This study attempts to build a carbon emission panel data model that simulates carbon emissions in China from 2000–2013 using nighttime lighting data and carbon emission statistics data.By applying the Exploratory Spatial-Temporal Data Analysis(ESTDA)framework,this study conducted an analysis on the spatial patterns and dynamic spatial-temporal interactions of carbon footprints from 2001–2013.The improved Tapio decoupling model was adopted to investigate the levels of coupling or decoupling between the carbon emission load and economic growth in 336 prefecture-level units.The results show that,firstly,high accuracy was achieved by the model in simulating carbon emissions.Secondly,the total carbon footprints and carbon deficits across China increased with average annual growth rates of 4.82%and 5.72%,respectively.The overall carbon footprints and carbon deficits were larger in the North than that in the South.There were extremely significant spatial autocorrelation features in the carbon footprints of prefecture-level units.Thirdly,the relative lengths of the Local Indicators of Spatial Association(LISA)time paths were longer in the North than that in the South,and they increased from the coastal to the central and western regions.Lastly,the overall decoupling index was mainly a weak decoupling type,but the number of cities with this weak decoupling continued to decrease.The unsustainable development trend of China’s economic growth and carbon emission load will continue for some time.展开更多
Scenario forecasting methods have been widely studied in recent years to cope with the wind power uncertainty problem. The main difficulty of this problem is to accurately and comprehensively reflect the time-series c...Scenario forecasting methods have been widely studied in recent years to cope with the wind power uncertainty problem. The main difficulty of this problem is to accurately and comprehensively reflect the time-series characteristics and spatial-temporal correlation of wind power generation. In this paper, the marginal distribution model and the dependence structure are combined to describe these complex characteristics. On this basis, a scenario generation method for multiple wind farms is proposed. For the marginal distribution model, the autoregressive integrated moving average-generalized autoregressive conditional heteroskedasticity-t (ARIMA-GARCH-t) model is proposed to capture the time-series characteristics of wind power generation. For the dependence structure, a time-varying regular vine mixed Copula (TRVMC) model is established to capture the spatial-temporal correlation of multiple wind farms. Based on the data from 8 wind farms in Northwest China, sufficient scenarios are generated. The effectiveness of the scenarios is evaluated in 3 aspects. The results show that the generated scenarios have similar fluctuation characteristics, autocorrelation, and crosscorrelation with the actual wind power sequences.展开更多
For better detecting the spatial-temporal change mode of individual susceptible-infected-symptomatic-treated-recovered epidemic progress and the characteristics of information/material flow in the epidemic spread netw...For better detecting the spatial-temporal change mode of individual susceptible-infected-symptomatic-treated-recovered epidemic progress and the characteristics of information/material flow in the epidemic spread network between regions,the epidemic spread mechanism of virus input and output was explored based on individuals and spatial regions.Three typical spatial information parameters including working unit/address,onset location and reporting unit were selected and SARS epidemic spread in-out flow in Beijing was defined based on the SARS epidemiological investigation data in China from 2002 to 2003 while its epidemiological characteristics were discussed.Furthermore,by the methods of spatial-temporal statistical analysis and network characteristic analysis,spatial-temporal high-risk hotspots and network structure characteristics of Beijing outer in-out flow were explored,and spatial autocorrelation/heterogeneity,spatial-temporal evolutive rules and structure characteristics of the spread network of Beijing inner in-out flow were comprehensively analyzed.The results show that(1)The outer input flow of SARS epidemic in Beijing concentrated on Shanxi and Guangdong provinces,but the outer output flow was disperse and mainly includes several north provinces such as Guangdong and Shandong.And the control measurement should focus on the early and interim progress of SARS breakout.(2)The inner output cases had significant positive autocorrelative characteristics in the whole studied region,and the high-risk population was young and middle-aged people with ages from 20 to 60 and occupations of medicine and civilian labourer.(3)The downtown districts were main high-risk hotspots of SARS epidemic in Beijing,the northwest suburban districts/counties were secondary high-risk hotspots,and northeast suburban areas were relatively safe.(4)The district/county nodes in inner spread network showed small-world characteristics and information/material flow had notable heterogeneity.The suburban Tongzhou and Changping districts were the underlying high-risk regions,and several suburban districts such as Shunyi and Huairou were the relatively low-risk safe regions as they carried out minority information/material flow.The exploration and analysis based on epidemic spread in-out flow help better detect and discover the potential spatial-temporal evolutive rules and characteristics of SARS epidemic,and provide a more effective theoretical basis for emergency/control measurements and decision-making.展开更多
基金supported by the National Natural Science Foundation of China (71273105)the Fundamental Research Funds for the Central Universities,China (2013YB12)
文摘Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%.
基金National Natural Science Foundation of China(41375025)863 Program(2012AA120903,2011AA12A104-3)+2 种基金Public Welfare Research Foundation of China Meteorological Administration(GYHY201106044,GYHY201106045)Meteorological Application Demonstration Project(E310/1112)4th and 5th GOSAT/TANSO joint research Project 2013-2015
文摘The variation of the atmospheric Carbon Dioxide (CO2) concentration plays an important role in global cli- mate and agriculture. We analyzed the spatial-temporal characteristics of CO2 in the China region and around the globe with the CO2 column mixing ratios observed by the Japanese GOSAT satellite (Greenhouse Gases Observing Satellite). In order to make sure that the accuracy of the CO2 data retrieved by the satellite meets the needs of the climate charac- teristics analyses, we ran a validation on the CO2 column mixing ratios retrieved by the satellite against the ground-based TCCON (Total Carbon Column Observing Network) observation data. The result shows that the two sets of data have a correlation coefficient of higher than 0.7, and a bias of within 2.2 ppmv. Therefore, the GOSAT CO2 da- ta can be used for the climate characteristics analysis of global CO2. Our analysis on the spatial-temporal characteristics of the CO2 column mixing ratios observed during the period of June 2009 through January 2014 proved that, with the impact of the natural emission of near ground CO2 and human activities, the global CO2 concentration has a significant latitudinal characteristics with its highest level averaging 390 oomv in the 0-40?N latitudinal zone in the Northern Hemisphere, and 387 ppmv in the Southern Hemisphere. China has a relatively higher CO2 concentration with the highest level exceeding 398 ppmv, and the eastern area higher than the western area. The variation of global CO2 concentration shows a seasonal pattern, i.e. the CO2 concen- tration reaches its highest in spring in the Northern Hemisphere averaging more than 392 ppmv, second highest in win- ter, and lowest in summer averaging less than 387 ppmv. It fluctuates the most in the Northern Hemisphere with an av- erage concentration of 392.5 ppmv in April, and 385.5 ppmv in July. While in the Southern Hemisphere, the seasonal fluctuation is smaller with the highest concentration occurring in July. Over the recent years, the global CO2 concentra- tion has shown an elevating trend with an average annual increase rate of 1.58 ppmv per year. It is a challenge that the human kind has to face to slow down the increase of the CO2 concentration.
基金This study was supported by the National Natural Science Foundation of China(U1703241)the Key International Cooperation Project of Chinese Academy of Sciences(121311KYSB20160005)the Open Project of Xinjiang Uygur Autonomous Region Key Laboratory of China(2017D04010).
文摘Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area.However,information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited.This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method,and the path analysis was used to clarify the impact of temperature(T),precipitation(P),actual evapotranspiration(ETa),wind speed(W)and sunshine duration(S)on RH.The results demonstrated that climatic conditions in North Xinjiang(NXJ)was more humid than those in Hexi Corridor(HXC)and South Xinjiang(SXJ).RH had a less significant downtrend in NXJ than that in HXC,but an increasingly rising trend was observed in SXJ during the last five decades,implying that HXC and NXJ were under the process of droughts,while SXJ was getting wetter.There was a turning point for the trend of RH in Xinjiang,which occurred in 2000.Path analysis indicated that RH was negatively correlated to T,ETa,W and S,but it increased with increase of P.S,T and W had the greatest direct effects on RH in HXC,NXJ and SXJ,respectively.ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ,while T was the dominant factor in SXJ.
文摘[Objective] The aim was to study the temporal and spatial characteristics and causes of cold wave in Qinhuangdao.[Method] Based on temperature data from five surface meteorological stations in Qinhuangdao from 1970 to 2009 and the latest standards issuing cold wave early warning signal,statistical analysis on the temporal and spatial distribution of cold wave was carried out,and the causes were discussed preliminarily.[Result] From 1970 to 2009,the frequencies of blue and yellow cold wave in Qinhuangdao region were 2 334 and 105 times respectively,and cold wave occurred most frequently in Qinglong County and least frequently in Lulong County,which was related to the effects of underlying surface,latitude and altitude.Cold wave might happen from September to next May,and the earliest occurrence date was September 9,while the latest end date was May 26.In addition,the frequency of cold wave was the highest in January and lowest in May.From 1970 to 2009,blue cold wave occurred most frequently in 1972 and 1979 and least frequently in 1984,while the frequency of yellow cold wave was the highest in 1979 and lowest in 9 years.From decadal variation,cold wave appeared most frequently in the 1970s and least frequently in the 1990s.With the increase of temperature,the frequency of cold wave showed decrease trend,and the beginning date tended to postpone,while its end date advanced,and it showed that the changes of cold wave was mainly caused by climate warming.[Conclusion] The study could provide theoretical guidance for the meteorological disaster prevention and reduction and local agricultural service.
基金Supported by the Natural Science Foundation of Shandong Province,China(ZR2010DM011)
文摘Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.
基金Under the auspices of National Natural Science Foundation of China(No.41561024)Philosophy Social Science Foundation of Shanxi Province of China(No.2015265)
文摘Drought is the most widespread and insidious natural hazard, presenting serious challenges to ecosystems and human society. The daily Standardized Precipitation Evapotranspiration Index(SPEI) has been developed to identify the regional spatiotemporal characteristics of drought conditions from 1960 to 2016, revealing the variability in drought characteristics across Southwest China. Daily data from142 meteorological stations across the region were used to calculate the daily SPEI at the annual and seasonal time scale. The Mann-Kendall test and the trend statistics were then applied to quantify the significance of drought trends, with the following results. 1) The regionally averaged intensity and duration of all-drought and severe drought showed increasing trends, while the intensity and duration of extreme drought exhibited decreasing trends. 2) Mixed(increasing/decreasing) trends were detected, in terms of intensity and duration, in the three types of drought events. In general, no evidence of significant trends(P < 0.05) was detected in the drought intensity and duration over the last 55 years at the annual timescale. Seasonally, spring was characterized by a severe drought trend for all drought and severe drought conditions, while extreme drought events in spring and summer were very severe. All drought intensities and durations showed an increasing trend across most regions, except in the northwestern parts of Sichuan Province. However, the areal extent of regions suffering increasing trends in severe and extreme drought became relatively smaller. 3) We identified the following drought hotspots: Guangxi Zhuang Autonomous Region from the 1960 s to the 1990 s, respectively. Guangxi Zhuang Autonomous Region and Guizhou Province in the 1970 s and 1980 s, and Yunnan Province in the 2000 s. Finally, this paper can benefit operational drought characterization with a day-to-day drought monitoring index, enabling a more risk-based drought management strategy in the context of global warming.
基金Supported by the China Postdoctoral Science Foundation of China (20060400532, 2006DS08018)
文摘In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.
基金Under the auspices of the National Natural Science Foundation of China(No.41371146,41671123)National Social Science Foundation of China(No.13BJY067)
文摘Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2016YFC0400406)
文摘This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator can obtain a high heat transfer rate with minimalpressure drop penalty. The simulations were carried out to understand the physicalbehavior of this kind of mesoscale heat enhancement component. By visualizing the heat transfer and flow characteristics, it is found that the swirlflow is induced by swirlgenerator in the circular tube couples with the impinging jet effect. After passing through the swirlgenerator, the localfriction factor of liquid can quickly return to lower levelmore quickly, while the localNusselt number maintains higher values for a distance; thus, the evaluation criterion of localperformance is improved. Single-factor optimization is used for three geometric parameters, i.e., the angle of swirlgenerator(25o, 45o, and 60o), the length of swirlgenerator(0.005, 0.01, and 0.02 m), and the center rod radius(1, 2, and 3 mm). The optimum parameters of the swirlgenerator for laminar flow of air in a circular tube are obtained, which should be 60o, 0.005 m, and 3 mm, respectively.
文摘Although China’s urban floating population is mainly concentrated in developed cities,from the central and western cities to the eastern developed cities,but the characteristics of the floating population in different cities are significantly different.This paper systematically investigates the spatiotemporal characteristics and influencing factors of the floating population in different levels of cities.The results show that the regional imbalance to further strengthen,accumulation and dispersion trend has become increasingly obvious,liquidity is positively correlated and city level scale,and urban agglomeration and the core city is still polarization center of floating population.Flow range is closely related to urban hierarchy:the higher the intra-urban grade,the more tend to inter-provincial flow;the lower the city grade,the more tend to intra-urban mobility.Short-term(1-2 years)and long-term(more than 7 years)flow-time coexist.The short-term liquidity increases with the city grade,and the long-term liquidity decreases with the city level.Farmers are still the main body of the floating population.Younger age,lower education level,low-skilled,high gender ratio employees are the most basic demographic characteristics of the floating population,although there are differences between different cities.The main reason for affecting the floating population is seeking jobs and doing business.
基金Under the auspices of National Natural Science Project(No.42161046)National Social Science Project(No.21CJY075)+2 种基金Guangxi Natural Science Project(No.2021JJB150070)Guangxi Philosophy and Social Science Project(No.20FJY027)Guangxi First-class Discipline Applied Economics Construction Project Fund(Guangxi Education and Scientific Research(No.[2022]No.1))。
文摘Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on the improved Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)mode,this study identifies and evaluates the LUMFs in the China-Vietnam border area between 2000 and 2018 from the perspectives of agricultural production,social security,ecological service,landscape recreation,and national security.The results show that:1)The comprehensive land use functions in most counties and cities continued to be improved.2)The comprehensive land use function exhibits remarkable spatial divergence and aggregation characteristics.The high-value area of the agricultural production function and social security function evolves from the east to the west.In addition,the spatial evolution of ecological service function is complicated,without an obvious spatial divergence and aggregation pattern.The landscape recreation function shows different spatial differentiation characteristics in the early and middle stage,and forms a large cluster in the later stage.Finally,the spatial evolution pattern of the national security function is significant.3)Designing differentiated border land policies,improving border land use security,and establishing a long-term mechanism for ecological protection and ecological compensation can aid in optimizing the LUMF level in the border area.
基金Major Program of the Natural Science Foundation of China,No.41590842
文摘Haze pollution has become a severe environmental problem in the daily life of the people in China. PM2.s makes a significant contribution to poor air quality. The spatio-temporal features of China's PM2.s concentrations should be investigated. This paper, based on ob- served data from 945 newly located monitoring sites in 2014 and industrial working population data obtained from International Standard Industrial Classification (ISIC), reveals the spa- tio-temporal variations of PM2.5 concentrations in China and the correlations among different industries. We tested the spatial autocorrelation of PM2.5 concentrations in the cities of China with the spatial autocorrelation model. A correlation coefficient to examine the correlativity of PM2.5 concentrations and 23 characteristic variables for 190 cities in China in 2014, from which the most important ones were chosen, and then a regression model was built to further reveal the social and economic factors affecting PMg.g concentrations. Results: (1) The Hu Huanyong Line and the Yangtze River were the E-W divide and S-N divide between high and low values of China. (2) The PM2.5 concentrations shows great seasonal variation, which is high in autumn and winter but low in spring and summer. The monthly average shows a U-shaped pattern, and daily average presents a periodic and impulse-shaped change. (3) PM2.5 concentrations had a distinct characteristic of spatial agglomeration. The North China Plain was the predominant region of agglomeration, and the southeastern coastal area had stable good air quality.
基金National Science-technology Support Plan Project, No.2012BAC 19B07 National Natural Science Foundation of China, No.41071044+2 种基金 No.41261016 No.41190084 Youth Teacher Scientific Capability Promoting Project of Northwest Normal University, No.NWNU-LKQN- 10-35
文摘As one of the areas with numerous lakes on the Tibetan Plateau, the Hoh Xil region plays an extremely important role in the fragile plateau eco-environment. Based on topographic maps in the 1970s and Landsat TM/ETM+ remote sensing images iin the 1990s and the period from 2000 to 2011, the data of 83 lakes with an area above 10 km2 each were obtained by digitization method and artificial visual interpretation technology, and the causes for lake variations were also analyzed. Some conclusions can be drawn as follows. (1) From the 1970s to 2011, the lakes in the Hoh Xil region firstly shrank and then expanded, in particular, the area of lakes generally decreased during the 1970s-1990s. Then the lakes expanded from the 1990s to 2000 and the area was slightly higher than that in the 1970s. The area of lakes dramatically increased after 2000. (2) From 2000 to 2011, the lakes with different area ranks in the Hoh Xil region showed an overall expansion trend. Meanwhile, some regional differences were also discovered. Most of the lakes expanded and were widely distributed in the northern, central and western parts of the region. Some lakes were merged together or overflowed due to their rapid expansion. A small number of lakes with the trend of area decrease or strong fluctuation were scattered in the central and southern parts of the study area. And their variations were related to their own supply conditions or hydraulic connection with the downstream lakes or rivers. (3) The increase in precipitation was the dominant factor resulting in the expansion of lakes in the Hoh Xil region. The secondary factor was the increase in meltwater from glaciers and frozen soil due to climate warming.
基金National Natural Science Foundation of China Youth Science Foundation ProjectNo.41701170+1 种基金National Natural Science Foundation of China,No.41661025,No.42071216Fundamental Research Funds for the Central Universities,No.18LZUJBWZY068。
文摘In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is important to obtain accurate dynamic information on the spatial and temporal patterns of carbon emissions and carbon footprints to support formulating effective national carbon emission reduction policies.This study attempts to build a carbon emission panel data model that simulates carbon emissions in China from 2000–2013 using nighttime lighting data and carbon emission statistics data.By applying the Exploratory Spatial-Temporal Data Analysis(ESTDA)framework,this study conducted an analysis on the spatial patterns and dynamic spatial-temporal interactions of carbon footprints from 2001–2013.The improved Tapio decoupling model was adopted to investigate the levels of coupling or decoupling between the carbon emission load and economic growth in 336 prefecture-level units.The results show that,firstly,high accuracy was achieved by the model in simulating carbon emissions.Secondly,the total carbon footprints and carbon deficits across China increased with average annual growth rates of 4.82%and 5.72%,respectively.The overall carbon footprints and carbon deficits were larger in the North than that in the South.There were extremely significant spatial autocorrelation features in the carbon footprints of prefecture-level units.Thirdly,the relative lengths of the Local Indicators of Spatial Association(LISA)time paths were longer in the North than that in the South,and they increased from the coastal to the central and western regions.Lastly,the overall decoupling index was mainly a weak decoupling type,but the number of cities with this weak decoupling continued to decrease.The unsustainable development trend of China’s economic growth and carbon emission load will continue for some time.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0902600).
文摘Scenario forecasting methods have been widely studied in recent years to cope with the wind power uncertainty problem. The main difficulty of this problem is to accurately and comprehensively reflect the time-series characteristics and spatial-temporal correlation of wind power generation. In this paper, the marginal distribution model and the dependence structure are combined to describe these complex characteristics. On this basis, a scenario generation method for multiple wind farms is proposed. For the marginal distribution model, the autoregressive integrated moving average-generalized autoregressive conditional heteroskedasticity-t (ARIMA-GARCH-t) model is proposed to capture the time-series characteristics of wind power generation. For the dependence structure, a time-varying regular vine mixed Copula (TRVMC) model is established to capture the spatial-temporal correlation of multiple wind farms. Based on the data from 8 wind farms in Northwest China, sufficient scenarios are generated. The effectiveness of the scenarios is evaluated in 3 aspects. The results show that the generated scenarios have similar fluctuation characteristics, autocorrelation, and crosscorrelation with the actual wind power sequences.
基金supported by National Natural Science Foundation of China(Grant Nos. 40871181 and 41101369)Key Knowledge Innovative Program of Chinese Academy of Sciences (Grant No. KZCX2-EW-318)+2 种基金Jiangxi Provincial Natural Science Foundation (Grant No. 20114BAB215024)Natural Science Youth Foundation of Jiangxi Provincial Office of Education (Grant No. GJJ11073)Open Foundation of Key Laboratory of Poyang Lake Wetland and Watershed Research,Ministry of Education (Grant No.PK2010001)
文摘For better detecting the spatial-temporal change mode of individual susceptible-infected-symptomatic-treated-recovered epidemic progress and the characteristics of information/material flow in the epidemic spread network between regions,the epidemic spread mechanism of virus input and output was explored based on individuals and spatial regions.Three typical spatial information parameters including working unit/address,onset location and reporting unit were selected and SARS epidemic spread in-out flow in Beijing was defined based on the SARS epidemiological investigation data in China from 2002 to 2003 while its epidemiological characteristics were discussed.Furthermore,by the methods of spatial-temporal statistical analysis and network characteristic analysis,spatial-temporal high-risk hotspots and network structure characteristics of Beijing outer in-out flow were explored,and spatial autocorrelation/heterogeneity,spatial-temporal evolutive rules and structure characteristics of the spread network of Beijing inner in-out flow were comprehensively analyzed.The results show that(1)The outer input flow of SARS epidemic in Beijing concentrated on Shanxi and Guangdong provinces,but the outer output flow was disperse and mainly includes several north provinces such as Guangdong and Shandong.And the control measurement should focus on the early and interim progress of SARS breakout.(2)The inner output cases had significant positive autocorrelative characteristics in the whole studied region,and the high-risk population was young and middle-aged people with ages from 20 to 60 and occupations of medicine and civilian labourer.(3)The downtown districts were main high-risk hotspots of SARS epidemic in Beijing,the northwest suburban districts/counties were secondary high-risk hotspots,and northeast suburban areas were relatively safe.(4)The district/county nodes in inner spread network showed small-world characteristics and information/material flow had notable heterogeneity.The suburban Tongzhou and Changping districts were the underlying high-risk regions,and several suburban districts such as Shunyi and Huairou were the relatively low-risk safe regions as they carried out minority information/material flow.The exploration and analysis based on epidemic spread in-out flow help better detect and discover the potential spatial-temporal evolutive rules and characteristics of SARS epidemic,and provide a more effective theoretical basis for emergency/control measurements and decision-making.