As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who vi...As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies.展开更多
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A...In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.展开更多
To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to...To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental...Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.展开更多
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic...Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.展开更多
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet...As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.展开更多
The prosperity of deep learning has revolutionized many machine learning tasks(such as image recognition,natural language processing,etc.).With the widespread use of autonomous sensor networks,the Internet of Things,a...The prosperity of deep learning has revolutionized many machine learning tasks(such as image recognition,natural language processing,etc.).With the widespread use of autonomous sensor networks,the Internet of Things,and crowd sourcing to monitor real-world processes,the volume,diversity,and veracity of spatial-temporal data are expanding rapidly.However,traditional methods have their limitation in coping with spatial-temporal dependencies,which either incorporate too much data from weakly connected locations or ignore the relationships between those interrelated but geographically separated regions.In this paper,a novel deep learning model(termed RF-GWN)is proposed by combining Random Forest(RF)and Graph WaveNet(GWN).In RF-GWN,a new adaptive weight matrix is formulated by combining Variable Importance Measure(VIM)of RF with the long time series feature extraction ability of GWN in order to capture potential spatial dependencies and extract long-term dependencies from the input data.Furthermore,two experiments are conducted on two real-world datasets with the purpose of predicting traffic flow and groundwater level.Baseline models are implemented by Diffusion Convolutional Recurrent Neural Network(DCRNN),Spatial-Temporal GCN(ST-GCN),and GWN to verify the effectiveness of the RF-GWN.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Mean Absolute Percentage Error(MAPE)are selected as performance criteria.The results show that the proposed model can better capture the spatial-temporal relationships,the prediction performance on the METR-LA dataset is slightly improved,and the index of the prediction task on the PEMS-BAY dataset is significantly improved.These improvements are extended to the groundwater dataset,which can effectively improve the prediction accuracy.Thus,the applicability and effectiveness of the proposed model RF-GWN in both traffic flow and groundwater level prediction are demonstrated.展开更多
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr...The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.展开更多
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi...The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.展开更多
Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures...Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.展开更多
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi...With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT.展开更多
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose...In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life d...Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively.展开更多
Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance o...Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale.展开更多
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w...Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.展开更多
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction...There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.展开更多
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ...As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.展开更多
基金R&D Program of Beijing Municipal Education Commission(No.KM202211417015)Academic Research Projects of Beijing Union University(No.ZK10202209)+1 种基金The team-building subsidy of“Xuezhi Professorship”of the College of Applied Arts and Science of Beijing Union University(No.BUUCAS-XZJSTD-2024005)Academic Research Projects of Beijing Union University(No.ZKZD202305).
文摘As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies.
基金This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403)the National Natural Science Foundation of China(Grant No.62032002)the 111 Project(Grant No.B21049).
文摘In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
基金supported by the Graduate Research and Innovation Project of Chongqing Normal University[Grant No.YKC23035],comprehensive evaluation,and driving factors of urban resilience in the Chengdu-Chongqing Economic Circle.
文摘To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金Supported by projects of the National Natural Science Foundation of China(Nos.92062216,41888101).
文摘Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.
基金the National Natural Science Foundation of China(No.61461027,61762059)the Provincial Science and Technology Program supported the Key Project of Natural Science Foundation of Gansu Province(No.22JR5RA226)。
文摘Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.
文摘As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.
文摘The prosperity of deep learning has revolutionized many machine learning tasks(such as image recognition,natural language processing,etc.).With the widespread use of autonomous sensor networks,the Internet of Things,and crowd sourcing to monitor real-world processes,the volume,diversity,and veracity of spatial-temporal data are expanding rapidly.However,traditional methods have their limitation in coping with spatial-temporal dependencies,which either incorporate too much data from weakly connected locations or ignore the relationships between those interrelated but geographically separated regions.In this paper,a novel deep learning model(termed RF-GWN)is proposed by combining Random Forest(RF)and Graph WaveNet(GWN).In RF-GWN,a new adaptive weight matrix is formulated by combining Variable Importance Measure(VIM)of RF with the long time series feature extraction ability of GWN in order to capture potential spatial dependencies and extract long-term dependencies from the input data.Furthermore,two experiments are conducted on two real-world datasets with the purpose of predicting traffic flow and groundwater level.Baseline models are implemented by Diffusion Convolutional Recurrent Neural Network(DCRNN),Spatial-Temporal GCN(ST-GCN),and GWN to verify the effectiveness of the RF-GWN.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Mean Absolute Percentage Error(MAPE)are selected as performance criteria.The results show that the proposed model can better capture the spatial-temporal relationships,the prediction performance on the METR-LA dataset is slightly improved,and the index of the prediction task on the PEMS-BAY dataset is significantly improved.These improvements are extended to the groundwater dataset,which can effectively improve the prediction accuracy.Thus,the applicability and effectiveness of the proposed model RF-GWN in both traffic flow and groundwater level prediction are demonstrated.
基金Youth Fund of National Natural Science Foundation of China (42101353)the Ministry of Housing and Urban-Rural Development Science Plan Project (2022-R-063)Liaoning Social Science Planning Fund Project (L21BGL046)。
文摘The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.
基金partially supported by the National Key Research and Development Program of China(2020YFB2104001)。
文摘The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.
基金supported by the National Basic Research Program of China(2012CB417001)the National Natural Science Foundation of China(41271125)
文摘Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.
基金supported by China’s National Natural Science Foundation(Nos.62072249,62072056)This work is also funded by the National Science Foundation of Hunan Province(2020JJ2029).
文摘With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT.
文摘In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金supported,in part,by the National Nature Science Foundation of China under Grant Numbers 62272236,62376128in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401.
文摘Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively.
基金funded by the National Key R&D Program of China(Grant No.2021YFD1500200)National Natural Science Foundation of China(Grant No.42077149)+4 种基金China Postdoctoral Science Foundation(Grant No.2019M660782)National Science and Technology Basic Resources Survey Program of China(Grant No.2019FY101300)Doctoral research start-up fund project of Liaoning Provincial Department of Science and Technology(Grant No.2021-BS-136)China Scholarship Council(201908210132)Young Scientific and Technological Talents Project of Liaoning Province(Grant Nos.LSNQN201910 and LSNQN201914)。
文摘Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale.
基金Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(Grant No.20214000000140,Graduate School of Convergence for Clean Energy Integrated Power Generation)Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2021R1A6C101A449)the National Research Foundation of Korea grant funded by the Ministry of Science and ICT(2021R1A2C1095139),Republic of Korea。
文摘Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.
文摘There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.
基金supported by the Meteorological Soft Science Project(Grant No.2023ZZXM29)the Natural Science Fund Project of Tianjin,China(Grant No.21JCYBJC00740)the Key Research and Development-Social Development Program of Jiangsu Province,China(Grant No.BE2021685).
文摘As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.