期刊文献+
共找到40,313篇文章
< 1 2 250 >
每页显示 20 50 100
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
1
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin graph convolutional network Multivariate time series prediction spatial-temporal graph
下载PDF
Adaptive spatial-temporal graph attention network for traffic speed prediction
2
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
3
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 Intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
Multi-Head Attention Spatial-Temporal Graph Neural Networks for Traffic Forecasting
4
作者 Xiuwei Hu Enlong Yu Xiaoyu Zhao 《Journal of Computer and Communications》 2024年第3期52-67,共16页
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc... Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods. 展开更多
关键词 Traffic Prediction Intelligent Traffic System Multi-Head Attention graph Neural Networks
下载PDF
Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls 被引量:1
5
作者 Xiaorui Zhang Qijian Xie +2 位作者 Wei Sun Yongjun Ren Mithun Mukherjee 《Computers, Materials & Continua》 SCIE EI 2023年第10期47-61,共15页
Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life d... Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively. 展开更多
关键词 Fall detection lightweight OpenPose spatial-temporal graph convolutional network dense blocks
下载PDF
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:2
6
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
下载PDF
Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network 被引量:2
7
作者 Qi Guo Shujun Zhang Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1653-1670,共18页
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora... Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset. 展开更多
关键词 Continuous sign language recognition graph attention network bidirectional long short-term memory connectionist temporal classification
下载PDF
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
8
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
Comprehensive evaluation and spatial-temporal evolution characteristics of urban resilience in Chengdu-Chongqing Economic Circle
9
作者 Xin Li Shuyi Zhang +1 位作者 Rongxi Ren Yafei Wang 《Chinese Journal of Population,Resources and Environment》 2024年第1期58-67,共10页
To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to... To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle. 展开更多
关键词 Chengdu-chongqing Economic Circle Urban resilience spatial-temporal evolution Driving factor
下载PDF
Spatial-temporal distribution and geochemistry of highly evolved Mesozoic granites in Great Xing’an Range,NE China:Discriminant criteria and geological significance
10
作者 WU Haoran YANG Hao +4 位作者 GE Wenchun JI Zheng DONG Yu JING Yan JING Jiahao 《Global Geology》 2024年第1期20-34,共15页
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental... Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate. 展开更多
关键词 highly evolved granite Great Xing’an Range spatial-temporal distribution extensional environment
下载PDF
Spatial-temporal Divergence Characteristics and Driving Factors of Green Economic Efficiency in the Yangtze River Economic Belt of China
11
作者 PAN Ting JIN Gui +1 位作者 ZENG Shibo WANG Rui 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1158-1174,共17页
The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable soc... The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB. 展开更多
关键词 green economic efficiency miniumum distance to strong efficient frontier DEA(MinDs) spatial-temporal evolution Geo-detector Yangtze River Economic Belt(YREB) China
下载PDF
Travel Attractions Recommendation with Travel Spatial-Temporal Knowledge Graphs 被引量:1
12
作者 Weitao Zhang Tianlong Gu +3 位作者 Wenping Sun Yochum Phatpicha Liang Chang Chenzhong Bin 《国际计算机前沿大会会议论文集》 2018年第2期19-19,共1页
关键词 spatial-temporal KNOWLEDGE graph RECOMMENDATION systemNetwork representation learning
下载PDF
Spatial-temporal Variation Characteristics of Water Quality in the Lower Reaches of the Nenjiang River
13
作者 Xiangzhe MENG Jing WANG +4 位作者 Yinglin XIE Fei PENG Chunsheng WEI Xin TIAN Lunwen WANG 《Meteorological and Environmental Research》 2024年第1期67-71,共5页
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet... As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction. 展开更多
关键词 Lower reaches of the Nenjiang River Water quality spatial-temporal variation
下载PDF
Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
14
作者 ZHANG Hong GONG Lei +2 位作者 ZHAO Tianxin ZHANG Xijun WANG Hongyan 《High Technology Letters》 EI CAS 2024年第4期370-379,共10页
Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial... Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy. 展开更多
关键词 traffic flow forecasting graph convolutional network(GCN) temporal convolu-tional network(TCN) attention mechanism(AM)
下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
15
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
下载PDF
Spatial-Temporal Variations in January Precipitation over the Period of 1950-2000 in Pakistan and Possible Links with Global Teleconnections: Geographical Perspective
16
作者 Iftikhar Ahmad Romana Ambreen +2 位作者 Shahzad Sultan Zhaobo Sun Weitao Deng 《American Journal of Climate Change》 2014年第4期378-387,共10页
Empirical Orthogonal Function (EOF) was performed to investigate spatial variation in January precipitation over Pakistan using ground observed mean monthly precipitation data from 1950-2000 with a combination of grid... Empirical Orthogonal Function (EOF) was performed to investigate spatial variation in January precipitation over Pakistan using ground observed mean monthly precipitation data from 1950-2000 with a combination of gridded reanalysis data of sea level pressure (SLP) and 500 hPa geopotential height. The leading EOF mode captures 37.51% of the total variance and the spatial-temporal variability of January precipitation was consistent in the study area. The temporal changes explicate non-periodic interannual variability and some tacit interdecadal variation. The anomalous condition is more prominent along the western bordering mountains and northern high mountainous region than any other region of Pakistan. Based on results the study reveals spatial-temporal variation in January precipitation and possible links with global teleconnections located both in the proximity as well as in the remote areas from the study locus. 展开更多
关键词 Pakistan January PRECIPITATION EOF Analysis spatial-temporal Variability
下载PDF
Spatial-temporal Evolvement Characteristics of Climate Productivity for the Plants on Inner Mongolia Desert Steppe 被引量:5
17
作者 韩芳 苗百岭 +3 位作者 郭瑞清 李兴华 那日苏 王海 《Meteorological and Environmental Research》 CAS 2010年第5期76-79,共4页
Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert stepp... Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert steppe.The spatial and temporal variation characteristics of climate-productivity were analyzed by using the methods of the tendency rate of the climate trend,accumulative anomaly,and spatial difference and so on.The results showed that the climate-productivity kept linear increased trend over Inner Mongolia desert steppe in recent 47 years,but not significant.In spatial distribution,the climate-productivity reduced with the increased latitude.The climate-productivity in southwest part of Inner Mongolia desert steppe was growing while that in the southeast was reducing.The variation rate of the climate-productivity increased from the northwest part to the southeast part of Inner Mongolia desert steppe.In recent 47 years,the climate-productivity in southeast Jurh underwent the greatest decreasing extent,and the region was the sensitive area of the climate-productivity variation. 展开更多
关键词 Desert steppe Climate productivity spatial-temporal distribution Variation rate China
下载PDF
Study on the Relationship among Forest Fire,Temperature and Precipitation and Its Spatial-temporal Variability in China 被引量:9
18
作者 吕爱锋 《Agricultural Science & Technology》 CAS 2011年第9期1396-1400,共5页
[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in... [Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in forest area of each province in fire season were obtained based on meterological data,forest distribution data,seasonal and monthly data of forest fire in China.Secondly,the relationship among forest fire area,precipitation and temperature was discussed through temporal and correlation analysis.[Result] The changes of precipitation and temperature with time could reflect the annual variation of fire area well.Forest fire area went up with the decrease of precipitation and increase of temprature,and visa versa.Meanwhile,there existed diffirences in the relationship in various regions over time.Correlation analyses revealed that there was positive correlation between forest fire area and temperature,especailly Northwest China (R=0.367,P〈0.01),Southwest China (R=0.327,P〈0.05),South China (R=0.33,P〈0.05),East China (R=0.516,P〈0.01) and Xinjiang (R=0.447,P〈0.05) with obviously positive correlation.At the same time,the correlation between forest fire area and precipitation was significantly positive in Northwest China (R=0.482,P〈0.01),while it was significantly negaive in South China (R=-0.323,P=0.03),but there was no significant correlation in other regions.[Conclusion] Relationships between forest fire and meteorological elements (precipitation and temprature) revealed in the study would be useful for fire provention and early warning in China. 展开更多
关键词 Forest fire PRECIPITATION TEMPERATURE spatial-temporal variability
下载PDF
Spatial-Temporal Distribution Characteristics and Limiting Factors of Medium-low Yield Farmland in Tianjin
19
作者 潘洁 吕雄杰 +1 位作者 肖辉 陆文龙 《Agricultural Science & Technology》 CAS 2015年第3期578-582,共5页
[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [... [Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc. 展开更多
关键词 Medium-low yield farmland spatial-temporal distribution Limiting factors TIANJIN
下载PDF
Spatial-temporal Evolution and Driving Force of Cultivated Land Quality in Henan Province
20
作者 宋艳华 《Agricultural Science & Technology》 CAS 2017年第11期2106-2112,2126,共8页
The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evalua... The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evaluate the cultivated land quality of 2002 and 2012 in Henan Province, and to research the change laws. Method of correlation coefficient was employed to select the driving forces affecting cultivated land quality evolution. The results indicated that the cultivated land quality in Henan Province increased slightly in the last ten years in general, and in spatial there were unchanged regions, increased regions and decreased regions. The cultivated land quality in spatial presented the trend of good becoming better, bad becoming worse, which should be highly valued in cultivated land quality protection and management. Land development and consolidation projects had significant contributions to increasing the cultivated land quality. Driving forces between the sudden change regions and gradual change regions were significantly different. The paper concluded that the research on the spatial-temporal evolution and driving force of cultivated land quality based on cultivated land quality evolution had important academic significance and practical value. 展开更多
关键词 Cultivated land quality spatial-temporal evolution Driving force Sudden change region Gradual change region Henan Province
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部