期刊文献+
共找到84,681篇文章
< 1 2 250 >
每页显示 20 50 100
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
1
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
Comprehensive evaluation and spatial-temporal evolution characteristics of urban resilience in Chengdu-Chongqing Economic Circle
2
作者 Xin Li Shuyi Zhang +1 位作者 Rongxi Ren Yafei Wang 《Chinese Journal of Population,Resources and Environment》 2024年第1期58-67,共10页
To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to... To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle. 展开更多
关键词 Chengdu-chongqing Economic Circle Urban resilience spatial-temporal evolution Driving factor
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
3
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin Graph convolutional network Multivariate time series prediction spatial-temporal graph
下载PDF
Spatial-temporal distribution and geochemistry of highly evolved Mesozoic granites in Great Xing’an Range,NE China:Discriminant criteria and geological significance
4
作者 WU Haoran YANG Hao +4 位作者 GE Wenchun JI Zheng DONG Yu JING Yan JING Jiahao 《Global Geology》 2024年第1期20-34,共15页
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental... Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate. 展开更多
关键词 highly evolved granite Great Xing’an Range spatial-temporal distribution extensional environment
下载PDF
Adaptive spatial-temporal graph attention network for traffic speed prediction
5
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Spatial-temporal Variation Characteristics of Water Quality in the Lower Reaches of the Nenjiang River
6
作者 Xiangzhe MENG Jing WANG +4 位作者 Yinglin XIE Fei PENG Chunsheng WEI Xin TIAN Lunwen WANG 《Meteorological and Environmental Research》 2024年第1期67-71,共5页
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet... As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction. 展开更多
关键词 Lower reaches of the Nenjiang River Water quality spatial-temporal variation
下载PDF
Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis 被引量:2
7
作者 Xiu-bo Sun Chang-lai Guo +3 位作者 Jing Zhang Jia-quan Sun Jian Cui Mao-hua Liu 《Journal of Groundwater Science and Engineering》 2023年第1期37-46,共10页
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr... The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August. 展开更多
关键词 GROUNDWATER NITRATE SOIL spatial-temporal variation Geostatistical analysis
下载PDF
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:2
8
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
下载PDF
Spatial-temporal variations and driving factors of soil organic carbon in forest ecosystems of Northeast China 被引量:1
9
作者 Shuai Wang Bol Roland +4 位作者 Kabindra Adhikari Qianlai Zhuang Xinxin Jin Chunlan Han Fengkui Qian 《Forest Ecosystems》 SCIE CSCD 2023年第2期141-152,共12页
Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance o... Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale. 展开更多
关键词 Soil organic carbon stocks Forest ecosystem spatial-temporal variation Carbon sink Digital soil mapping
下载PDF
颈椎前路Hybrid手术和颈椎后路单开门椎管扩大成形术治疗多节段脊髓型颈椎病临床疗效分析
10
作者 王理想 李春根 +5 位作者 柳根哲 赵子义 赵思浩 陈超 祝永刚 李伟 《吉林大学学报(医学版)》 CAS CSCD 北大核心 2024年第1期228-235,共8页
目的:分析颈椎前路Hybrid手术和颈椎后路单开门椎管扩大成形术(EODL)治疗多节段脊髓型颈椎病的疗效,探讨多节段脊髓型颈椎病患者手术方式的选择。方法:对2017年7月—2020年7月在首都医科大学附属北京中医医院手术治疗的70例多节段脊髓... 目的:分析颈椎前路Hybrid手术和颈椎后路单开门椎管扩大成形术(EODL)治疗多节段脊髓型颈椎病的疗效,探讨多节段脊髓型颈椎病患者手术方式的选择。方法:对2017年7月—2020年7月在首都医科大学附属北京中医医院手术治疗的70例多节段脊髓型颈椎病患者进行回顾性分析,根据手术方式不同,分为前路组35例和后路组35例,前路组患者行Hybrid手术[颈椎前路椎间盘切除融合术(ACDF)联合人工颈椎间盘置换术(ACDR)],后路组患者行EODL。记录2组患者住院时间、手术时间、术中出血量和术后引流量,通过日本骨科协会(JOA)评分、JOA改善率、颈椎残障功能指数(NDI)、疼痛视觉模拟评分(VAS)和术后满意度评分进行疗效评价,统计2组患者术后并发症发生情况。结果:与后路组比较,前路组患者术中出血量、术后引流量、住院时间和手术时间均明显减少(P<0.01),术前各项评分差异无统计学意义(P>0.05)。末次随访时,与后路组比较,前路组患者JOA评分和JOA改善率明显升高(P<0.01),NDI评分和VAS评分明显降低(P<0.01)。与术前比较,末次随访时2组患者JOA评分明显升高(P<0.01),NDI和VAS评分均明显降低(P<0.01)。按术后满意度评分评价,2组患者术后满意度均较高。2组患者术后并发症发生率比较差异无统计学意义(P>0.05)。结论:颈椎前路Hybrid手术和EODL在治疗多节段脊髓型颈椎病方面均取得了较为满意的疗效。Hybrid手术具有出血量少和手术时间短等优点,临床上应根据患者实际情况选择最适宜的术式。 展开更多
关键词 脊髓型颈椎病 颈椎后路 椎管减压 颈椎前路手术 hybrid手术
下载PDF
Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls
11
作者 Xiaorui Zhang Qijian Xie +2 位作者 Wei Sun Yongjun Ren Mithun Mukherjee 《Computers, Materials & Continua》 SCIE EI 2023年第10期47-61,共15页
Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life d... Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively. 展开更多
关键词 Fall detection lightweight OpenPose spatial-temporal graph convolutional network dense blocks
下载PDF
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
12
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 QUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
基于Hybrid A^(*)算法的变压器声级巡检系统研究与设计
13
作者 李刚 康兵 +2 位作者 许志浩 袁小翠 莫海鑫 《电子设计工程》 2024年第21期13-17,22,共6页
随着国内变电站数目逐步增加,采用固定式声级监测终端对变压器声级检测的方式已经满足不了日常检测的需求。为解决固定式声级监测终端方式成本高、维护复杂、设备利用率低等问题,该文率先提出了一种变压器声级巡检系统,并设计了最优声... 随着国内变电站数目逐步增加,采用固定式声级监测终端对变压器声级检测的方式已经满足不了日常检测的需求。为解决固定式声级监测终端方式成本高、维护复杂、设备利用率低等问题,该文率先提出了一种变压器声级巡检系统,并设计了最优声级巡检路径。通过场地定位传感器生成变压器场地栅格图信息,采用Hybrid A^(*)算法将场地栅格图信息生成符合国标所要求的最优声级巡检路径检测点;针对所开发的变压器声级巡检装置,采用生成的巡检路径对变压器进行声级测定作业,对测定的声级数据进行分析处理。测试结果表明,该文开发的系统与设计算法的变压器声级巡检时间、检测效率以及数据的采集准确性都优于固定式声级监测终端方式,系统完成变压器声级巡检全过程的成功率可达95%。 展开更多
关键词 变压器声级 巡检装置设计 hybrid A^(*)算法 声级测定 系统设计
下载PDF
复杂建设环境下基于Hybrid A^(*)算法的铁路平面线形绿色优化设计
14
作者 张天龙 何庆 +2 位作者 高岩 高天赐 李子涵 《高速铁路技术》 2024年第1期47-52,共6页
随着“双碳经济下绿色铁路”理念的兴起,将“绿色生态”融入到铁路平面线路优化已成为近年来的研究热点。本文以铁路建设成本与生态破坏成本的协同优化为目标,引入并改进了一种自动驾驶导航算法(Hybrid A^(*)算法),以适应复杂的铁路设... 随着“双碳经济下绿色铁路”理念的兴起,将“绿色生态”融入到铁路平面线路优化已成为近年来的研究热点。本文以铁路建设成本与生态破坏成本的协同优化为目标,引入并改进了一种自动驾驶导航算法(Hybrid A^(*)算法),以适应复杂的铁路设计问题,同时考虑最小曲线半径、最大曲线半径、最短曲线长度、最短夹直线长度、缓和曲线长度等铁路线形约束。研究结果表明:(1)改进后算法以离散网格方式整合外部环境因素,实现渐进式全局探索,获取接近全局最优的铁路线路设计结果;(2)该方法在复杂外部环境约束下,无需预设水平交点位置和数量,可自动生成符合线路-环境耦合约束的优化平面线路方案。 展开更多
关键词 铁路线路设计 水平线路 绿色生态 hybrid A^(*)算法
下载PDF
p-d Orbital Hybridization Engineered Single-Atom Catalyst for Electrocatalytic Ammonia Synthesis 被引量:1
15
作者 Jingkun Yu Xue Yong Siyu Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期119-125,共7页
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,... The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs. 展开更多
关键词 first-principle calculations Nitrogen reduction p-d orbital hybridization single-atom catalysts
下载PDF
Enhancing rock fragmentation prediction in mining operations:A hybrid GWO-RF model with SHAP interpretability 被引量:1
16
作者 ZHANG Yu-lin QIU Yin-gui +2 位作者 ARMAGHANI Danial Jahed MONJEZI Masoud ZHOU Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2916-2929,共14页
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy... In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry. 展开更多
关键词 BLASTING rock fragmentation random forest grey wolf optimization hybrid tree-based technique
下载PDF
Dual-ion carrier storage through Mg^(2+) addition for high-energy and long-life zinc-ion hybrid capacitor 被引量:1
17
作者 Junjie Zhang Xiang Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期179-185,共7页
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul... Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs. 展开更多
关键词 zinc-ion hybrid capacitor MgSO_(4) ELECTROLYTE rate performance storage mechanism
下载PDF
Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability 被引量:1
18
作者 Changyu Leng Zongbin Zhao +5 位作者 Xuzhen Wang Yuliya V.Fedoseeva Lyubov G.Bulusheva Alexander V.Okotrub Jian Xiao Jieshan Qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期184-192,共9页
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l... Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability. 展开更多
关键词 carbon composite electrostatic interaction metal-organic framework coating SELF-ASSEMBLY zinc-ion hybrid capacitor
下载PDF
Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction 被引量:1
19
作者 Huitao Yu Lianqiang Peng +2 位作者 Can Chen Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期136-148,共13页
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff... Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes. 展开更多
关键词 Orthotropic continuous structures hybrid carbon networks Carbon/polymer composites Thermal interface materials
下载PDF
Hybrid手术对Stanford B型主动脉夹层疗效的研究进展
20
作者 申海健 胡皓昀 +3 位作者 周勘 肖飞 于长江 朱平 《岭南心血管病杂志》 CAS 2024年第5期562-566,共5页
主动脉夹层主要通过使用假体移植物的开胸手术修复来治疗。在过去的10年里,胸主动脉腔内修复术(TEVAR)已成为一种创伤更小、潜在更安全的治疗方法。然而,单一的微创腔内修复术在缺乏足够的锚定区的Stanford B型主动脉夹层(TBAD)患者上... 主动脉夹层主要通过使用假体移植物的开胸手术修复来治疗。在过去的10年里,胸主动脉腔内修复术(TEVAR)已成为一种创伤更小、潜在更安全的治疗方法。然而,单一的微创腔内修复术在缺乏足够的锚定区的Stanford B型主动脉夹层(TBAD)患者上有其局限性。因此,结合了外科手术及胸主动脉腔内修复术的Hy‐brid手术(或称为杂交手术),通过外科手段重建左颈总动脉和左锁骨下动脉的弓上分流术,再结合微创腔内修复术,显著减少患者在外科手术中并发症的发生率,且提高了那些常规胸主动脉腔内修复术缺乏理想锚定区患者的生存率。 展开更多
关键词 主动脉夹层 胸主动脉腔内修复术 hybrid手术 弓上分流术
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部