Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal duri...Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal during shear loading was also researched.The results show that gas pressure can hasten crack growth at the shear fracture surface,can reduce the shear strength of gassy coal,and can accelerate the shear failure process.Shear failure in gassy coal exhibits five stages:the pre-crack stage;the stable crack growth stage;the unsteady crack growth stage;the fracture stage;and,finally,the friction crack stage.The shear breaking creates two kinds of crack,shear cracks and tensile cracks.Cracks first appear in the shear plane at both ends and then extend toward the center until a shear fracture surface forms.The direction of shear crack propagation diverges from the predetermined shear plane by an angle of about 5°-10°.展开更多
The migration of strong earthquakes is an important research topic because the migration phenomena reflect partly the seismic mechanism and involve the prediction of tendency of seismic activity. Research on migration...The migration of strong earthquakes is an important research topic because the migration phenomena reflect partly the seismic mechanism and involve the prediction of tendency of seismic activity. Research on migration of strong earthquakes has mostly focused on finding the phenomena. Some attempts on getting regularity were comparatively subjective. This paper suggests that there should be indices of migration in earthquake dataset and the indexes should have statistical meaning if there is regularity in the migration of strong earthquakes. In this study, three derivative attributes of migration, i.e., migration orientation, migration distance and migration time interval, were statistically analyzed. Results in the North China region show that the migration of strong earthquakes has statistical meaning. There is a dominant migration orientation (W by S to E by N), a dominant distance (≤100km and on the confines of 300~700km), and a dominant time interval (≤1a and on the confines of 3~4a). The results also show that the migration will differ slightly with different magnitude range or earthquake activity phase.展开更多
Migration of strong earthquakes (M≥7.0) along the North-South Seismic Belt of China since 1500 AD shows three patterns: Approximately equal time and distance interval migration from N to S, varied patterns of migrati...Migration of strong earthquakes (M≥7.0) along the North-South Seismic Belt of China since 1500 AD shows three patterns: Approximately equal time and distance interval migration from N to S, varied patterns of migration from S to N and grouped strong earthquake activity in a certain period over the entire seismic belt. Analysis of strong earthquakes in the past hundred years shows that the seismicity on the North-South Seismic Belt is also associated with strong earthquake activities on the South Asia Seismic Belt which extends from Myanmar to Sumatra, Indonesia. Strong earthquakes on the former belt often lag several months or years behind the quakes occurring on the later belt. So, after the occurrence of the December 26, 2004 M_S8.7 great earthquake off the western coast of Sumatra, Indonesia, the possibility of occurrence of strong earthquakes on the North-South Seismic Belt of China cannot be ignored. The above-mentioned migration characteristics of strong earthquakes are related to the northeastward collision and subduction of the India Plate as well as the interaction between the Qinghai-Xizang (Tibet) Plateau and the stable and hard Ordos and Alashan Massifs at its northeastern margin.展开更多
We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for cont...We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.展开更多
Earthquakes exhibit clear clustering on the earth. It is important to explore the spatial-temporal characteristics of seismicity clusters and their spatial heterogeneity. We analyze effects of plate space, tectonic st...Earthquakes exhibit clear clustering on the earth. It is important to explore the spatial-temporal characteristics of seismicity clusters and their spatial heterogeneity. We analyze effects of plate space, tectonic style, and their interaction on characteristic of cluster.Based on data of earthquakes not less than moment magnitude(M_w) 5.6 from 1960 to 2014, this study used the spatial-temporal scan method to identify earthquake clusters. The results indicate that seismic spatial-temporal clusters can be classified into two types based on duration: persistent clusters and burst clusters. Finally, we analysed the spatial heterogeneity of the two types. The main conclusions are as follows: 1) Ninety percent of the persistent clusters last for 22-38 yr and show a high clustering likelihood;ninety percent of the burst clusters last for 1-1.78 yr and show a high relative risk. 2) The persistent clusters are mainly distributed in interplate zones, especially along the western margin of the Pacific Ocean. The burst clusters are distributed in both intraplate and interplate zones, slightly concentrated in the India-Eurasia interaction zone. 3) For the persistent type, plate interaction plays an important role in the distribution of the clusters’ likelihood and relative risk. In addition, the tectonic style further enhances the spatial heterogeneity. 4) For the burst type,neither plate activity nor tectonic style has an obvious effect on the distribution of the clusters’ likelihood and relative risk. Nevertheless,interaction between these two spatial factors enhances the spatial heterogeneity, especially in terms of relative risk.展开更多
Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd,...Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd, 2014, and the Kangding Ms6.3 earthquake that occurred on November 22 nd, 2014; the mechanism of gravity variation was also explored. The results are as follows:(1) Prior to both earthquakes, gravity variation exhibited similar characteristics as those observed before both the Tangshan and Wenchuan earthquakes, in which typical precursor anomalies were positive gravity variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the earthquake.(2) A relatively accurate prediction of the occurrence locations of the two earthquakes was made by the Gravity Network Center of China(GNCC) based on these precursor anomalies. In the gravity study report on the 2014 earthquake trends submitted at the end of 2013, the Daofu-Shimian section at the junction of the Xianshuihe and Longmenshan fault zones was noted as an earthquake-risk region with a predicted magnitude of 6.5, which covered the epicenter of the Kangding Ms6.3 earthquake. In another report on earthquake trends in southwestern China submitted in mid-2014, the Lianfeng, Zhaotong fault zone was also classified as an earthquake-risk region with a magnitude of 6.0, and the central area of this region basically overlapped with the epicenter of the Ludian Ms6.5 earthquake.(3) The gravity variation characteristics are reasonably consistent with crustal movements, and deep material migration is likely the primary cause of gravity variation.展开更多
The relationship between the change of a local gravity field and the mass migration underground is discussed by means of using a point-source disturbed body as a substitute for the mass migration underground. Some sig...The relationship between the change of a local gravity field and the mass migration underground is discussed by means of using a point-source disturbed body as a substitute for the mass migration underground. Some significant local gravity field changes in Beijing area have been found, from which the three parameters of the disturbed bodies, location, depth and mass, have been derived successfully from the observations of a gravimetric network. In order to determine the depth of a body, a new approach is suggested in which the gravity change difference is used instead of the gravity change itself. The mass of a disturbing body has been estimated properly. Astronomical PZT is suggested for this kind of survey. The results provide us a picture of the underground mass migration with which the gravity changes on the ground surface may be interpreted in a better way. This additional information may be useful in seismological studies.展开更多
Spatial scanning is done for two regions in Chinese Mainland,where displayed a denseprecursory network during 1994~1998.The two regions are the mid-southern segment of theNorth-south seismic belt(20°~35°N,...Spatial scanning is done for two regions in Chinese Mainland,where displayed a denseprecursory network during 1994~1998.The two regions are the mid-southern segment of theNorth-south seismic belt(20°~35°N,95°~110°E)and North China(36°~42°N,110°~120°E).We took 0.5°×0.5°as a spatial window with a step of 0.25°and 4 months as atemporal window with a step of 1 month.For the two regions,the anomaly density is scannedfrom 1994 and 1995 respectively in the two regions.The precursory anomalies are all fromthe Division of Seismic Trend in China and the Division of Seismic Trend in the Capital Area,Center for Analysis and Prediction,China Seismological Bureau.A seismogenic tectonicmodel is introduced to explain the scanning results.In the model,the frictional strength ofthe focal sources is distributed randomly.After the boundary plate motion rate and all othergeological parameters are given,the stress of the sources in the system changesinhomogenously due to the variation of the frictional展开更多
Migration plays an increasing role in China's economy since mobility rose and economic restructuring has proceeded during the last three decades. Given the background of most studies focusing on migration in a partic...Migration plays an increasing role in China's economy since mobility rose and economic restructuring has proceeded during the last three decades. Given the background of most studies focusing on migration in a particular period, there is a critical need to analyze the spatial-temporal patterns of migration. Using bicomponent trend mapping technique and interprovincial migration data during the periods 1985-1990, 1990-1995, 1995-2000, 2000- 2005, and 2005-2010 we analyze net-, in-, out-migration intensity, and their changes over time in this study. Strong spatial variations in migration intensity were found in China's interprovincial migration, and substantial increase in migration intensity was also detected in eastern China during 1985-2010. Eight key destinations are mostly located within the three rapidly growing economic zones of eastern China (Pearl River Delta, Yangtze River Delta and Beijing-Tianjin-Hebei Metropolitan Region), and they are classified into three types: mature, emerging, and fluctuant origins, while most key origins are relatively undeveloped central and western provinces, which are exactly in accordance with China's economic development patterns. The results of bicomponent trend mapping indicate that, in a sense, the migration in the south was more active than the north over the last three decades. The result shows the new changing features of spatial-temporal patterns of China's interprovincial migration that Fan and Chen did not find out in their research. A series of social-economic changes including rural transformation, balanced regional development, and labor market changes should be paid more attention to explore China's future interprovincial migration.展开更多
In this work,we study the development,evolution,and migration of turbulent coherent structures in the turbulent boundary layer at Reτ=630 using time-resolved particle image velocimetry(TR-PIV).Multiple techniques,inc...In this work,we study the development,evolution,and migration of turbulent coherent structures in the turbulent boundary layer at Reτ=630 using time-resolved particle image velocimetry(TR-PIV).Multiple techniques,including multi-scale analysis,conditional averaging,cross-correlation,and spatial-temporal topological analysis are applied to extract the evolution principle,migration trajectory,and convection velocity vector of the targeted coherent structures from a Lagrangian perspective.The spanwise vortex structures with larger scale and intensity at a certain wall-normal height y were the main focus of the present study.In the statistical sense,spanwise vortex structures move away from the wall with the shape changing from a bulge to an ellipse,and finally to a circle.Two straight lines emerge from the mean transfer trajectory curve of the spanwise vortex,in which the horizontal one is located at the viscous sublayer(y^(+)<10),the other is a logarithmic straight line existing in the range of 50<y^(+)<120,and the inclination angle of the tangential migration path is fixed at around 12°.The streamwise convection velocity U_(c)of scaled spanwise vortex structures satisfies U_(c)/U_(∞)=0.5-0.6 below y=0.03δ(i.e.,U^(+)_(c)=11-13 undery^(+)=20).In particular,in the region of 50<y^(+)<120,the velocity growth curves of U_(c)and wall-normal convection velocity V_(c)follow the log-law distribution very well,and the slopes are consistent with that of the log-law region of the turbulent boundary layer.Our observations provide microscopic evidences of the logarithmic-linear distribution of the migration trajectory of spanwise vortex structures.展开更多
In this paper, the similarity and the meanings of anomalous pattern of entropy for tilt tide amplitude factor, the distribution of entropy and dimension for tilt velocity, the similarity and relationships for long-per...In this paper, the similarity and the meanings of anomalous pattern of entropy for tilt tide amplitude factor, the distribution of entropy and dimension for tilt velocity, the similarity and relationships for long-period tilt deformation and earthquake migration are demonstrated. The deformation wave and its meanings have also been explained. The authors explored the relationships between distribution of similar pattern and epicenter. The possibility of prediction for next earthquake epicenter has also been explored based on the combining tilt field and earthquake activity.展开更多
High-frequency rupture process of the Oct 23, 2011 Van-Merkez earthquake is imaged by back-projection method using high-quality teleseismic P wave data from the US Array, and prestack Kirchhoff migration using P wave ...High-frequency rupture process of the Oct 23, 2011 Van-Merkez earthquake is imaged by back-projection method using high-quality teleseismic P wave data from the US Array, and prestack Kirchhoff migration using P wave data from a subarray of global seismic networks. The rupture model with two asperities is confirmed by previous two methods. In low-frequency imaging, a large asperity derived from the migration method corresponds to the second one from the high-frequency P waves. The con- sistency of the locations of asperities from datasets with different frequency bands indicates that there is possible insignificance of the frequency-dependent feature for the earthquake. The resultant images illustrate the spatial and temporal evolution of the rupture, which mainly propa- gated WSW over a length of 33 km during the first 18 s, accompanying with bursts of two asperities at 3 and 11-13 s. The rupture direction is confirmed by the S wave comer frequency variations of strong ground accelerations. The rupture fronts are mainly located at the updip of the causative fault. Based on polarities of the P waveforms and focal mechanisms of the mainshock and aftershocks, the failure of these two asperities is determined to have occurred on a reverse fault with a dip angle of 47°. Hence, the rupture pattern of the 2011 Van-Merkez earthquakewas dominated by a unilateral rupture toward the west- southwest direction.展开更多
Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution cha...Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution characteristics of deformation anomalies in the northeastern margin of the Qinghai-Tibetan Plateau before and after the Menyuan M_(S)6.9 earthquake were studied by using the Fisher statistical test method. By analyzing the characteristics of these anomalies, we found that: 1) The deformation anomalies are mainly distributed in the marginal front area of the Qinghai-Tibetan Plateau, where short-term deformation anomalies are prone to occur due to a high gradient of gravity;2) The deformation anomalies along the northeastern margin of the Qinghai-Tibetan Plateau are characterized by spatial propagation, and the migration rate is about 2.4 km/d. The propagation pattern is counterclockwise, consistent with the migration direction of M_(S)≥ 6.0 earthquakes;3) The time and location of the Menyuan earthquake are related to the group migration of earthquakes with M_(S)≥ 6.0. Finally,based on the results of gravity field variation and the theory of crust stress wave, the law of deformation anomaly distribution was discussed. We suggest that both the deformation propagation along the northeastern margin of the Qinghai-Tibetan Plateau and the earthquake migration are possibly associated with the variation of the stress field caused by subsurface mass flow.展开更多
The Indonesian region is one of the most seismically active zones on the earth. On December 26, 2004, an M_S 8.7 earthquake (as measured by the China Seismograph Network, or M_w = 9.3 as measured by USGS) struck the w...The Indonesian region is one of the most seismically active zones on the earth. On December 26, 2004, an M_S 8.7 earthquake (as measured by the China Seismograph Network, or M_w = 9.3 as measured by USGS) struck the west coast of northern Sumatra, Indonesia. By its magnitude it is classified as the world’s fourth largest earthquake since 1900 and the largest one since the 1964 Alaska earthquake. The spatial distribution of the relocation of larger aftershocks (M>4.5) following the main shock suggests a length and width of the rupture of about 1200km and 200km, respectively. The shock triggered massive tsunamis that affected several countries throughout South and Southeast Asia. It is a shallow interplate event of thrust type in the trench. Its epicenter is located at the northwestern end of the Indonesia-Melanesia plate boundary tectonic zone. In 2004, eight shocks of M≥7.0 occurred in this area, showing a migration from east to west. It implies that these shocks represent a correlated and consistent dynamic process along this subduction zone. These interplate events are associated with convergence of several plates and their fast motion in this region, which result in strong and complex structures and deformation. The India-Australia plate is underthrusting toward the Sunda continental block or Burma plate at a low angle, producing a great locked area on the shallow portion of the subduction zone where enormous strain is accumulated. Interseismic uplift recorded by coral growth and horizontal velocities measured by GPS show the geometry of the locked portion of the Sumatra subduction zone. The vertical and horizontal data reasonably match with a model in which the plate interface is fully locked over a significant width. This locked fault zone extends to a horizontal distance of 132km from the trench, which corresponds to a depth of 50km. The sudden ruptures and large-scale slip of this locked area as a release of stress occurred, are the direct cause of the M8.7 earthquake near Indonesia in 2004.展开更多
基金supported in part by the State Key Basic Research Program of China(No.2011CB201203)in part by the General Project of the National Natural Science Foundation of China(No.50974141)the Fundamental Research Funds for the Central Universities(No.CDJZR12240055)
文摘Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal during shear loading was also researched.The results show that gas pressure can hasten crack growth at the shear fracture surface,can reduce the shear strength of gassy coal,and can accelerate the shear failure process.Shear failure in gassy coal exhibits five stages:the pre-crack stage;the stable crack growth stage;the unsteady crack growth stage;the fracture stage;and,finally,the friction crack stage.The shear breaking creates two kinds of crack,shear cracks and tensile cracks.Cracks first appear in the shear plane at both ends and then extend toward the center until a shear fracture surface forms.The direction of shear crack propagation diverges from the predetermined shear plane by an angle of about 5°-10°.
文摘The migration of strong earthquakes is an important research topic because the migration phenomena reflect partly the seismic mechanism and involve the prediction of tendency of seismic activity. Research on migration of strong earthquakes has mostly focused on finding the phenomena. Some attempts on getting regularity were comparatively subjective. This paper suggests that there should be indices of migration in earthquake dataset and the indexes should have statistical meaning if there is regularity in the migration of strong earthquakes. In this study, three derivative attributes of migration, i.e., migration orientation, migration distance and migration time interval, were statistically analyzed. Results in the North China region show that the migration of strong earthquakes has statistical meaning. There is a dominant migration orientation (W by S to E by N), a dominant distance (≤100km and on the confines of 300~700km), and a dominant time interval (≤1a and on the confines of 3~4a). The results also show that the migration will differ slightly with different magnitude range or earthquake activity phase.
基金the Major Program of the National Natural Science Foundation of China (Grant No.90202018)the National Natural Science Foundation of China (40572125)+1 种基金the Special Social Commonweal Research Programs of the Ministry of Science and Technology of China (2004DIB3J129)the special programs of China Earthquake Administration
文摘Migration of strong earthquakes (M≥7.0) along the North-South Seismic Belt of China since 1500 AD shows three patterns: Approximately equal time and distance interval migration from N to S, varied patterns of migration from S to N and grouped strong earthquake activity in a certain period over the entire seismic belt. Analysis of strong earthquakes in the past hundred years shows that the seismicity on the North-South Seismic Belt is also associated with strong earthquake activities on the South Asia Seismic Belt which extends from Myanmar to Sumatra, Indonesia. Strong earthquakes on the former belt often lag several months or years behind the quakes occurring on the later belt. So, after the occurrence of the December 26, 2004 M_S8.7 great earthquake off the western coast of Sumatra, Indonesia, the possibility of occurrence of strong earthquakes on the North-South Seismic Belt of China cannot be ignored. The above-mentioned migration characteristics of strong earthquakes are related to the northeastward collision and subduction of the India Plate as well as the interaction between the Qinghai-Xizang (Tibet) Plateau and the stable and hard Ordos and Alashan Massifs at its northeastern margin.
基金jointly supported by the National Key R&D Program (No.2022YFF0800601)the Istanbul Technical University Research Fund (ITU-BAP)+1 种基金the Alexander von Humboldt Foundation Research Fellowship Award for providing computing facilities through the Humboldt-Stiftung Follow-Up Programthe University of California,Riverside。
文摘We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.
基金Under the auspices of National Natural Science Foundation of China(No.41771537)Fundamental Research Funds for the Central Universities
文摘Earthquakes exhibit clear clustering on the earth. It is important to explore the spatial-temporal characteristics of seismicity clusters and their spatial heterogeneity. We analyze effects of plate space, tectonic style, and their interaction on characteristic of cluster.Based on data of earthquakes not less than moment magnitude(M_w) 5.6 from 1960 to 2014, this study used the spatial-temporal scan method to identify earthquake clusters. The results indicate that seismic spatial-temporal clusters can be classified into two types based on duration: persistent clusters and burst clusters. Finally, we analysed the spatial heterogeneity of the two types. The main conclusions are as follows: 1) Ninety percent of the persistent clusters last for 22-38 yr and show a high clustering likelihood;ninety percent of the burst clusters last for 1-1.78 yr and show a high relative risk. 2) The persistent clusters are mainly distributed in interplate zones, especially along the western margin of the Pacific Ocean. The burst clusters are distributed in both intraplate and interplate zones, slightly concentrated in the India-Eurasia interaction zone. 3) For the persistent type, plate interaction plays an important role in the distribution of the clusters’ likelihood and relative risk. In addition, the tectonic style further enhances the spatial heterogeneity. 4) For the burst type,neither plate activity nor tectonic style has an obvious effect on the distribution of the clusters’ likelihood and relative risk. Nevertheless,interaction between these two spatial factors enhances the spatial heterogeneity, especially in terms of relative risk.
基金jointly supported by the Director Foundation of Institute of Seismology,China Earthquake Administration(IS201326121)the special earthquake research grant offered by the China Earthquake Administration(201208009,201308009)the National Natural Science Foundation of China(41304059)
文摘Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd, 2014, and the Kangding Ms6.3 earthquake that occurred on November 22 nd, 2014; the mechanism of gravity variation was also explored. The results are as follows:(1) Prior to both earthquakes, gravity variation exhibited similar characteristics as those observed before both the Tangshan and Wenchuan earthquakes, in which typical precursor anomalies were positive gravity variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the earthquake.(2) A relatively accurate prediction of the occurrence locations of the two earthquakes was made by the Gravity Network Center of China(GNCC) based on these precursor anomalies. In the gravity study report on the 2014 earthquake trends submitted at the end of 2013, the Daofu-Shimian section at the junction of the Xianshuihe and Longmenshan fault zones was noted as an earthquake-risk region with a predicted magnitude of 6.5, which covered the epicenter of the Kangding Ms6.3 earthquake. In another report on earthquake trends in southwestern China submitted in mid-2014, the Lianfeng, Zhaotong fault zone was also classified as an earthquake-risk region with a magnitude of 6.0, and the central area of this region basically overlapped with the epicenter of the Ludian Ms6.5 earthquake.(3) The gravity variation characteristics are reasonably consistent with crustal movements, and deep material migration is likely the primary cause of gravity variation.
文摘The relationship between the change of a local gravity field and the mass migration underground is discussed by means of using a point-source disturbed body as a substitute for the mass migration underground. Some significant local gravity field changes in Beijing area have been found, from which the three parameters of the disturbed bodies, location, depth and mass, have been derived successfully from the observations of a gravimetric network. In order to determine the depth of a body, a new approach is suggested in which the gravity change difference is used instead of the gravity change itself. The mass of a disturbing body has been estimated properly. Astronomical PZT is suggested for this kind of survey. The results provide us a picture of the underground mass migration with which the gravity changes on the ground surface may be interpreted in a better way. This additional information may be useful in seismological studies.
基金This project was sponsored by the China Seismological Bureau(95-04-03-03-02)
文摘Spatial scanning is done for two regions in Chinese Mainland,where displayed a denseprecursory network during 1994~1998.The two regions are the mid-southern segment of theNorth-south seismic belt(20°~35°N,95°~110°E)and North China(36°~42°N,110°~120°E).We took 0.5°×0.5°as a spatial window with a step of 0.25°and 4 months as atemporal window with a step of 1 month.For the two regions,the anomaly density is scannedfrom 1994 and 1995 respectively in the two regions.The precursory anomalies are all fromthe Division of Seismic Trend in China and the Division of Seismic Trend in the Capital Area,Center for Analysis and Prediction,China Seismological Bureau.A seismogenic tectonicmodel is introduced to explain the scanning results.In the model,the frictional strength ofthe focal sources is distributed randomly.After the boundary plate motion rate and all othergeological parameters are given,the stress of the sources in the system changesinhomogenously due to the variation of the frictional
基金National Basic Research Program of China (973 Program), No.2012CB95570001 Key Research Program of the Chinese Academy of Sciences, No.KZZD-EW-06-04+1 种基金 National Natural Science Foundation of China, No.41301121 National Key Technologies R&D Program of China, No.2012BAJ15B02
文摘Migration plays an increasing role in China's economy since mobility rose and economic restructuring has proceeded during the last three decades. Given the background of most studies focusing on migration in a particular period, there is a critical need to analyze the spatial-temporal patterns of migration. Using bicomponent trend mapping technique and interprovincial migration data during the periods 1985-1990, 1990-1995, 1995-2000, 2000- 2005, and 2005-2010 we analyze net-, in-, out-migration intensity, and their changes over time in this study. Strong spatial variations in migration intensity were found in China's interprovincial migration, and substantial increase in migration intensity was also detected in eastern China during 1985-2010. Eight key destinations are mostly located within the three rapidly growing economic zones of eastern China (Pearl River Delta, Yangtze River Delta and Beijing-Tianjin-Hebei Metropolitan Region), and they are classified into three types: mature, emerging, and fluctuant origins, while most key origins are relatively undeveloped central and western provinces, which are exactly in accordance with China's economic development patterns. The results of bicomponent trend mapping indicate that, in a sense, the migration in the south was more active than the north over the last three decades. The result shows the new changing features of spatial-temporal patterns of China's interprovincial migration that Fan and Chen did not find out in their research. A series of social-economic changes including rural transformation, balanced regional development, and labor market changes should be paid more attention to explore China's future interprovincial migration.
基金the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11802195)the National Natural Science Foundation of China(Grant Nos.12172242,and 11972251)+2 种基金the Key Program of the National Natural Science Foundation of China(Grant No.11732010)Sino-German International Cooperation Project supported by Sino-German Science Center(GZ1575)the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.201801D221027).
文摘In this work,we study the development,evolution,and migration of turbulent coherent structures in the turbulent boundary layer at Reτ=630 using time-resolved particle image velocimetry(TR-PIV).Multiple techniques,including multi-scale analysis,conditional averaging,cross-correlation,and spatial-temporal topological analysis are applied to extract the evolution principle,migration trajectory,and convection velocity vector of the targeted coherent structures from a Lagrangian perspective.The spanwise vortex structures with larger scale and intensity at a certain wall-normal height y were the main focus of the present study.In the statistical sense,spanwise vortex structures move away from the wall with the shape changing from a bulge to an ellipse,and finally to a circle.Two straight lines emerge from the mean transfer trajectory curve of the spanwise vortex,in which the horizontal one is located at the viscous sublayer(y^(+)<10),the other is a logarithmic straight line existing in the range of 50<y^(+)<120,and the inclination angle of the tangential migration path is fixed at around 12°.The streamwise convection velocity U_(c)of scaled spanwise vortex structures satisfies U_(c)/U_(∞)=0.5-0.6 below y=0.03δ(i.e.,U^(+)_(c)=11-13 undery^(+)=20).In particular,in the region of 50<y^(+)<120,the velocity growth curves of U_(c)and wall-normal convection velocity V_(c)follow the log-law distribution very well,and the slopes are consistent with that of the log-law region of the turbulent boundary layer.Our observations provide microscopic evidences of the logarithmic-linear distribution of the migration trajectory of spanwise vortex structures.
文摘In this paper, the similarity and the meanings of anomalous pattern of entropy for tilt tide amplitude factor, the distribution of entropy and dimension for tilt velocity, the similarity and relationships for long-period tilt deformation and earthquake migration are demonstrated. The deformation wave and its meanings have also been explained. The authors explored the relationships between distribution of similar pattern and epicenter. The possibility of prediction for next earthquake epicenter has also been explored based on the combining tilt field and earthquake activity.
基金supported by the National Science Natural Foundation of China (Grant Nos.41074029,40821160552 and 40821062)
文摘High-frequency rupture process of the Oct 23, 2011 Van-Merkez earthquake is imaged by back-projection method using high-quality teleseismic P wave data from the US Array, and prestack Kirchhoff migration using P wave data from a subarray of global seismic networks. The rupture model with two asperities is confirmed by previous two methods. In low-frequency imaging, a large asperity derived from the migration method corresponds to the second one from the high-frequency P waves. The con- sistency of the locations of asperities from datasets with different frequency bands indicates that there is possible insignificance of the frequency-dependent feature for the earthquake. The resultant images illustrate the spatial and temporal evolution of the rupture, which mainly propa- gated WSW over a length of 33 km during the first 18 s, accompanying with bursts of two asperities at 3 and 11-13 s. The rupture direction is confirmed by the S wave comer frequency variations of strong ground accelerations. The rupture fronts are mainly located at the updip of the causative fault. Based on polarities of the P waveforms and focal mechanisms of the mainshock and aftershocks, the failure of these two asperities is determined to have occurred on a reverse fault with a dip angle of 47°. Hence, the rupture pattern of the 2011 Van-Merkez earthquakewas dominated by a unilateral rupture toward the west- southwest direction.
基金sponsored by the National Natural Science Foundation of China (41330314)。
文摘Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution characteristics of deformation anomalies in the northeastern margin of the Qinghai-Tibetan Plateau before and after the Menyuan M_(S)6.9 earthquake were studied by using the Fisher statistical test method. By analyzing the characteristics of these anomalies, we found that: 1) The deformation anomalies are mainly distributed in the marginal front area of the Qinghai-Tibetan Plateau, where short-term deformation anomalies are prone to occur due to a high gradient of gravity;2) The deformation anomalies along the northeastern margin of the Qinghai-Tibetan Plateau are characterized by spatial propagation, and the migration rate is about 2.4 km/d. The propagation pattern is counterclockwise, consistent with the migration direction of M_(S)≥ 6.0 earthquakes;3) The time and location of the Menyuan earthquake are related to the group migration of earthquakes with M_(S)≥ 6.0. Finally,based on the results of gravity field variation and the theory of crust stress wave, the law of deformation anomaly distribution was discussed. We suggest that both the deformation propagation along the northeastern margin of the Qinghai-Tibetan Plateau and the earthquake migration are possibly associated with the variation of the stress field caused by subsurface mass flow.
文摘The Indonesian region is one of the most seismically active zones on the earth. On December 26, 2004, an M_S 8.7 earthquake (as measured by the China Seismograph Network, or M_w = 9.3 as measured by USGS) struck the west coast of northern Sumatra, Indonesia. By its magnitude it is classified as the world’s fourth largest earthquake since 1900 and the largest one since the 1964 Alaska earthquake. The spatial distribution of the relocation of larger aftershocks (M>4.5) following the main shock suggests a length and width of the rupture of about 1200km and 200km, respectively. The shock triggered massive tsunamis that affected several countries throughout South and Southeast Asia. It is a shallow interplate event of thrust type in the trench. Its epicenter is located at the northwestern end of the Indonesia-Melanesia plate boundary tectonic zone. In 2004, eight shocks of M≥7.0 occurred in this area, showing a migration from east to west. It implies that these shocks represent a correlated and consistent dynamic process along this subduction zone. These interplate events are associated with convergence of several plates and their fast motion in this region, which result in strong and complex structures and deformation. The India-Australia plate is underthrusting toward the Sunda continental block or Burma plate at a low angle, producing a great locked area on the shallow portion of the subduction zone where enormous strain is accumulated. Interseismic uplift recorded by coral growth and horizontal velocities measured by GPS show the geometry of the locked portion of the Sumatra subduction zone. The vertical and horizontal data reasonably match with a model in which the plate interface is fully locked over a significant width. This locked fault zone extends to a horizontal distance of 132km from the trench, which corresponds to a depth of 50km. The sudden ruptures and large-scale slip of this locked area as a release of stress occurred, are the direct cause of the M8.7 earthquake near Indonesia in 2004.