期刊文献+
共找到2,834篇文章
< 1 2 142 >
每页显示 20 50 100
Attention-relation network for mobile phone screen defect classification via a few samples 被引量:1
1
作者 Jiao Mao Guoliang Xu +1 位作者 Lijun He Jiangtao Luo 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1113-1120,共8页
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro... How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages. 展开更多
关键词 Mobile phone screen defects A few samples relation network Attention mechanism Dilated convolution
下载PDF
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
2
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
3
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin Graph convolutional network Multivariate time series prediction spatial-temporal graph
下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
4
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 relation extraction graph convolutional neural networks dependency tree dynamic structure attention
下载PDF
Adaptive spatial-temporal graph attention network for traffic speed prediction
5
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis 被引量:12
6
作者 鄂加强 李玉强 龚金科 《Journal of Central South University》 SCIE EI CAS 2011年第5期1733-1737,共5页
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo... As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately. 展开更多
关键词 oscillating heat pipe grey relational analysis fimction chain neural network heat transfer
下载PDF
Material component to non-linear relation between sediment yield and drainage network development:an flume experimental study 被引量:2
7
作者 JIN De-sheng, CHEN Hao, GUO Qing-wu (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期271-281,共11页
This paper examines the experimental study on influence of material component to non-linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 8... This paper examines the experimental study on influence of material component to non-linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 81.2 m2, the longitudinal gradient and cross section slope are from 0.0348 to 0.0775 and from 0.0115 to 0.038, respectively. Different model materials with a medium diameter of 0.021 mm, 0.076 mm and 0.066 mm cover three experiments each. An artificial rainfall equipment is a sprinkler-system composed of 7 downward nozzles, distributed by hexagon type and a given rainfall intensity is 35.56 mm/hr.cm2. Three experiments are designed by process-response principle at the beginning the ψ shaped small network is dug in the flume. Running time spans are 720 m, 1440 minutes and 540 minutes for Runs I, IV and VI, respectively. Three experiments show that the sediment yield processes are characterized by delaying with a vibration. During network development the energy of a drainage system is dissipated by two ways, of which one is increasing the number of channels (rill and gully), and the other one is enlarging the channel length. The fractal dimension of a drainage network is exactly an index of energy dissipation of a drainage morphological system. Change of this index with time is an unsymmetrical concave curve. Comparison of three experiments explains that the vibration and the delaying ratio of sediment yield processes increase with material coarsening, while the number of channel decreases. The length of channel enlarges with material fining. There exists non-linear relationship between fractal dimension and sediment yield with an unsymmetrical hyperbolic curve. The absolute value of delaying ratio of the curve reduces with time running and material fining. It is characterized by substitution of situation to time. 展开更多
关键词 material component network sediment yield nonlinear relation EXPERIMENT
下载PDF
A Graph with Adaptive AdjacencyMatrix for Relation Extraction
8
作者 Run Yang YanpingChen +1 位作者 Jiaxin Yan Yongbin Qin 《Computers, Materials & Continua》 SCIE EI 2024年第9期4129-4147,共19页
The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes de... The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models. 展开更多
关键词 relation extraction graph convolutional neural network adaptive adjacency matrix
下载PDF
Relationships Between Fractal Road and Drainage Networks in Wuling Mountainous Area:Another Symmetric Understanding of Human-Environment Relations 被引量:2
9
作者 LIU Cheng-liang DUAN De-zhong ZHANG Hong 《Journal of Mountain Science》 SCIE CSCD 2014年第4期1060-1069,共10页
Symmetrical relationships between humans and their environment have been referred to as an extension of symmetries in the human geographical system and have drawn great attention. This paper explored the symmetry betw... Symmetrical relationships between humans and their environment have been referred to as an extension of symmetries in the human geographical system and have drawn great attention. This paper explored the symmetry between physical and human systems through fractal analysis of the road and drainage networks in Wuling mountainous area. We found that both the road and drainage networks reflect weak clustering distributions. The evolution of the road network shared a significant self-organizing composition, while the drainage network showed obvious double fraetal characteristics. The geometric fractal dimension of the road network was larger than that of the drainage network. In addition, when assigned a weight relating to hierarchy or length, neither the road network nor drainage network showed a fractal property. These findings indicated that the fractal evolution of the road network shared certain similarities with fractal distribution of the drainage network. The symmetry between the two systems resulted from an interactive process of destroying symmetry at the lower order and reconstructing symmetry at the higher order. The relationships between the fractal dimensions of the rural-urban road network, the drainage network andthe urban system indicated that the development of this area was to achieve the symmetrical isomorphism of physical-human geographical systems. 展开更多
关键词 Fractal road network Fractal drainagenetwork SYMMETRY Human-environment relation SELF-ORGANIZATION
下载PDF
Neural Network Model for the Constitutive Relations of Soil 被引量:1
10
作者 Zeng Jing, Wang J ing\|tao School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第01A期86-90,共5页
The soil constitutive relation is one of the important issues in soil mechanics. It is very difficult to establish mathematical models because of the complexity of soil mechanical behavior.... The soil constitutive relation is one of the important issues in soil mechanics. It is very difficult to establish mathematical models because of the complexity of soil mechanical behavior. We propose a new method of neural network analysis for establishing soil constitutive models. Based on triaxial experiments of sand in the laboratory, the nonlinear constitutive models of sand expressed by the neural network were set up. In comparison with Duncan\|Chang's model, the neural network method for sand modeling has been proved to be more convenient, accurate and it has a strong fault\|tolerance function. 展开更多
关键词 neural network constitutive relations constitutive model
下载PDF
Spatial-temporal characteristics and influencing factors of relative humidity in arid region of Northwest China during 1966–2017 被引量:1
11
作者 CHEN Ditao LIU Wenjiang +3 位作者 HUANG Farong LI Qian Friday UCHENNAOCHEGE LI Lanhai 《Journal of Arid Land》 SCIE CSCD 2020年第3期397-412,共16页
Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the a... Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area.However,information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited.This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method,and the path analysis was used to clarify the impact of temperature(T),precipitation(P),actual evapotranspiration(ETa),wind speed(W)and sunshine duration(S)on RH.The results demonstrated that climatic conditions in North Xinjiang(NXJ)was more humid than those in Hexi Corridor(HXC)and South Xinjiang(SXJ).RH had a less significant downtrend in NXJ than that in HXC,but an increasingly rising trend was observed in SXJ during the last five decades,implying that HXC and NXJ were under the process of droughts,while SXJ was getting wetter.There was a turning point for the trend of RH in Xinjiang,which occurred in 2000.Path analysis indicated that RH was negatively correlated to T,ETa,W and S,but it increased with increase of P.S,T and W had the greatest direct effects on RH in HXC,NXJ and SXJ,respectively.ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ,while T was the dominant factor in SXJ. 展开更多
关键词 relative humidity spatial-temporal characteristics path analysis influencing factor arid region
下载PDF
Combined spatial-temporal energy harvesting and relay selection for cognitive wireless powered networks 被引量:1
12
作者 Yuan Gao Haixia He +1 位作者 Rongjun Tan Junho Choi 《Digital Communications and Networks》 SCIE CSCD 2021年第2期201-213,共13页
In order to improve the Energy Efficiency(EE)and spectrum utilization of Cognitive Wireless Powered Networks(CWPNs),a combined spatial-temporal Energy Harvesting(EH)and relay selection scheme is proposed.In the propos... In order to improve the Energy Efficiency(EE)and spectrum utilization of Cognitive Wireless Powered Networks(CWPNs),a combined spatial-temporal Energy Harvesting(EH)and relay selection scheme is proposed.In the proposed scheme,for protecting the Primary User(PU),a two-layer guard zone is set outside the PU based on the outage probability threshold of the PU.Moreover,to increase the energy of the CWPNs,the EH zone in the two-layer guard zone allows the Secondary Users(SUs)to spatially harvest energy from the Radio Frequency(RF)signals of temporally active PUs.To improve the utilization of the PU spectrum,the guard zone outside the EH zone allows for the constrained power transmission of SUs.Moreover,the relay selection transmission is designed in the transmission zone of the SU to improve the EE of the CWPNs.In addition to the EE of the CWPNs,the outage probabilities of the SU and PU are derived.The results reveal that the setting of a two-layer guard zone can effectively reduce the outage probability of the PU and improve the EE of CWPNs.Furthermore,the relay selection transmission decreases the outage probabilities of the SUs. 展开更多
关键词 spatial-temporal energy harvesting Cognitive wireless powered networks Guard zone Outage probability Energy efficiency
下载PDF
Spatial Interaction Network Analysis of Crude Oil Trade Relations between Countries along the Belt and Road 被引量:2
13
作者 Qixin WANG Kun QIN +4 位作者 Donghai LIU Gang XU Yanqing XU Yang ZHOU Rui XIAO 《Journal of Geodesy and Geoinformation Science》 2022年第2期60-74,共15页
Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network ... Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network which takes the countries as nodes and takes the trade relations as edges.The networked mining and evolution analysis can provide important references for the research on trade relations among the B&R countries and the formulation of trade policy.This paper researches and discusses the construction,statistical analysis,top networks and stability of the crude oil trade network between the B&R countries from 2001 to 2020 from the perspectives of Geo-Computation for Social Sciences(GCSS)and spatial interaction.Firstly,evolutions of out-degree,in-degree,out-strength and in-strength of the top 10 countries in the crude oil trade network are computed and analyzed.Secondly,the top network method is used to explore the evolution characteristics of hierarchical structures.And finally,the sequential evolution characteristics of the crude oil trade network stability are analyzed utilizing the network stability measure method based on the trade relationship autocorrelation function.The analysis results show that Russia has the largest out-degree and out-strength,and China has the largest in-degree and in-strength.The crude oil trade volume of the top 10 import and export networks between 2001—2020 accounts for over 90%of the total trade volume of the crude oil trade network,and the proportion remains relatively stable.However,the stability of the network showed strong fluctuations in 2009,2012 and 2014,which may be closely related to major international events in these years,which could furtherly be used to build a correlation model between network volatility and major events.This paper explores how to construct and analyze the spatial interaction network of crude oil trade and can provide references for trade relations research and trade policy formulation of B&R countries. 展开更多
关键词 spatial interaction network Geo-Computation for Social Sciences(GCSS) the Belt and Road Initiative(BRI) trade relation network stability
下载PDF
Joint Self-Attention Based Neural Networks for Semantic Relation Extraction 被引量:1
14
作者 Jun Sun Yan Li +5 位作者 Yatian Shen Wenke Ding Xianjin Shi Lei Zhang Xiajiong Shen Jing He 《Journal of Information Hiding and Privacy Protection》 2019年第2期69-75,共7页
Relation extraction is an important task in NLP community.However,some models often fail in capturing Long-distance dependence on semantics,and the interaction between semantics of two entities is ignored.In this pape... Relation extraction is an important task in NLP community.However,some models often fail in capturing Long-distance dependence on semantics,and the interaction between semantics of two entities is ignored.In this paper,we propose a novel neural network model for semantic relation classification called joint self-attention bi-LSTM(SA-Bi-LSTM)to model the internal structure of the sentence to obtain the importance of each word of the sentence without relying on additional information,and capture Long-distance dependence on semantics.We conduct experiments using the SemEval-2010 Task 8 dataset.Extensive experiments and the results demonstrated that the proposed method is effective against relation classification,which can obtain state-ofthe-art classification accuracy just with minimal feature engineering. 展开更多
关键词 Self-attention relation extraction neural networks
下载PDF
Uncertain Relation Suited to Overfitting of BP Neural Network 被引量:3
15
作者 任继平 李祚泳 江春华 《Journal of Electronic Science and Technology of China》 2004年第1期53-57,共5页
A general uncertainty relation between the change of weighted value which represents learning ability and the discrimination error of unlearning sample sets which represents generalization ability is revealed in the m... A general uncertainty relation between the change of weighted value which represents learning ability and the discrimination error of unlearning sample sets which represents generalization ability is revealed in the modeling of back propagation (BP) neural network. Tests of numerical simulation for multitype of complicated functions are carried out to determine the value distribution (1×10?5~5×10?4) of overfitting parameter in the uncertainty relation. Based on the uncertainty relation, the overfitting in the training process of given sample sets using BP neural network can be judged. 展开更多
关键词 back progagation neural network OVERFITTING learning ability generalization ability uncertainty relation
下载PDF
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
16
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response related factors Prediction BP neural network
下载PDF
Comprehensive evaluation of communication network based on network carrying and associating relation
17
作者 周万银 李明辉 夏靖波 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期410-416,共7页
In order to solve the problem of integrated management in different types of networks, a comprehensive evaluation method for a communication network is presented via network carrying and associating relation. Based on... In order to solve the problem of integrated management in different types of networks, a comprehensive evaluation method for a communication network is presented via network carrying and associating relation. Based on the abstract and analysis of network relation, the principle and procedure of the evaluation method are discussed. The method considers the effect of individual di- versity of network running indicator, and reflects the contribution and associating degree of network carrying relation. Experiment results verify that the proposed method is correct and efficient. The re- search provides a new idea for the future network management. 展开更多
关键词 network comprehensive evaluation carrying and associating relation Petri net
下载PDF
Artificial neural network model of constitutive relations for shock-prestrained copper
18
作者 杨扬 朱远志 +3 位作者 李正华 张新明 杨立斌 陈志永 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期210-212,共3页
Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding... Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5 , the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1 , and the accuracy of the rate error is less than 3%. [ 展开更多
关键词 shock prestrain constitutive relations artificial neural network model
下载PDF
The Invulnerability of Directed Interdependent Networks with Multiple Dependency Relations
19
作者 Hanbing Gao Zhiming Ma 《Applied Mathematics》 2018年第10期1104-1115,共12页
The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal wit... The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal with this question. To improve network invulnerability, we’d better avoid dependent relations transmission and add supportive relations symmetrically. 展开更多
关键词 Interdependent networkS DEPENDENCY relationS INVULNERABILITY
下载PDF
An Empirical Study on Strategic Network,Relational Capability and Operating Performance of Agricultural Enterprises
20
作者 Meihua YIN Jianhui WU 《Asian Agricultural Research》 2015年第11期5-11,共7页
By establishing the theoretical model of " strategic network cooperation-relational capability-operating performance" and structural equation,we conduct a sampling survey on 208 agricultural enterprises,and ... By establishing the theoretical model of " strategic network cooperation-relational capability-operating performance" and structural equation,we conduct a sampling survey on 208 agricultural enterprises,and use Spss21. 0 and Amos21. 0 for empirical analysis of influence of three factors in strategic network cooperation( market futurity,trusting relationship and business networks) on market relational capability and operating performance of agricultural enterprises. The results show that the establishment of trusting relationship and business networks in strategic networks has a positive impact on the operating performance of agricultural enterprises,and relational capability plays a fully mediating role while relational capability has not mediating effect on market futurity. This study provides a meaningful reference for the follow-up studies on relational capability and operating performance of agricultural enterprises,to further enhance the operating performance of agricultural enterprises and effectively improve farmers' income. 展开更多
关键词 MARKET FUTURITY Trusting relationship BUSINESS networks relationAL CAPABILITY Operating performance
下载PDF
上一页 1 2 142 下一页 到第
使用帮助 返回顶部