期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于时空约束的电动汽车充电策略 被引量:7
1
作者 鞠非 杨春玉 +2 位作者 徐小龙 张洁 刘凌燕 《电网与清洁能源》 北大核心 2016年第9期96-101,共6页
针对电动汽车行驶过程中的充电需求在时间和空间上的随机性问题,提出了一种基于时空约束的电动汽车最佳充电选择策略,该策略可以使电动汽车在最短的时间内获得最佳充电服务;在此基础上,建立了充分考虑电动汽车充电行驶路径、电动汽车充... 针对电动汽车行驶过程中的充电需求在时间和空间上的随机性问题,提出了一种基于时空约束的电动汽车最佳充电选择策略,该策略可以使电动汽车在最短的时间内获得最佳充电服务;在此基础上,建立了充分考虑电动汽车充电行驶路径、电动汽车充电站内排队等待时间和电动汽车充电过程的充电行为总用时最短的充电选择模型(time-spatial charging selection model,TSCSM)。仿真结果表明,与就近充电选择策略相比,该充电选择策略在缩短电动汽车充电行为全过程总用时方面具有显著优势。 展开更多
关键词 电动汽车 充电策略 时空约束 时间最短 充电行为全过程
下载PDF
带空间约束的邻域中值加权FCM图像分割算法 被引量:1
2
作者 杨军 柯运生 王茂正 《计算机工程与科学》 CSCD 北大核心 2017年第5期931-935,共5页
在聚类分析过程中,欧氏距离是最为常用的距离度量方法,而传统的基于欧氏距离的图像分割方法没有综合考虑空间信息和邻域特征等因素。提出了一种用邻域中值加权欧氏距离替代欧氏距离的度量方法,同时植入像素空间约束信息,这样可以利用更... 在聚类分析过程中,欧氏距离是最为常用的距离度量方法,而传统的基于欧氏距离的图像分割方法没有综合考虑空间信息和邻域特征等因素。提出了一种用邻域中值加权欧氏距离替代欧氏距离的度量方法,同时植入像素空间约束信息,这样可以利用更多的图像空间信息来改善图像分割质量。通过对多幅图像的分割实验结果表明,与已有的算法相比,本算法不仅能提升图像分割效果,具有更好的噪声抵抗性,同时能加速算法的收敛速度,从而提高了分割效率。 展开更多
关键词 聚类 欧氏距离 图像分割 邻域中值加权 空间约束
下载PDF
Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface 被引量:1
3
作者 Bang-hua YANG Liang-fei HE Lin LIN Qian WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第6期486-496,共11页
Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interferenc... Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interference, but collecting EOG signals during a long-term EEG recording is inconvenient and uncomfortable for the subject. To remove ocular artifacts from EEG in brain-computer interfaces (BCIs), a method named spatial constraint independent component analysis based recursive least squares (SCICA-RLS) is proposed. The method consists of two stages. In the first stage, independent component analysis (ICA) is used to decompose multiple EEG channels into an equal number of independent components (ICs). Ocular ICs are identified by an automatic artifact detection method based on kurtosis. Then empirical mode decomposition (EMD) is employed to remove any cerebral activity from the identified ocular ICs to obtain exact altifact ICs. In the second stage, first, SCICA applies exact artifact ICs obtained in the first stage as a constraint to extract artifact ICs from the given EEG signal. These extracted ICs are called spatial constraint ICs (SC-ICs). Then the RLS based adaptive filter uses SC-ICs as reference signals to reduce interference, which avoids the need for parallel EOG recordings. In addition, the proposed method has the ability of fast computation as it is not necessary for SCICA to identify all ICs like ICA. Based on the EEG data recorded from seven subjects, the new approach can lead to average classification accuracies of 3.3% and 12.6% higher than those of the standard ICA and raw EEG, respectively. In addition, the proposed method has 83.5% and 83.8% reduction in time-consumption compared with the standard ICA and ICA-RLS, respectively, which demonstrates a better and faster OA reduction. 展开更多
关键词 Ocular artifacts Electroencephalogram (EEG) Electrooculogram (EOG) Brain-computer interface (BCI) spatialconstraint independent component analysis based recursive least squares (SCICA-RLS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部