Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode...Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical...In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical precipitation(1982-2014)on the Qinghai-Tibetan Plateau was evaluated in this study.Results indicate that all models exhibit an overestimation of precipitation through the analysis of the Taylor index,temporal and spatial statistical parameters.To correct the overestimation,a fusion correction method combining the Backpropagation Neural Network Correction(BP)and Quantum Mapping(QM)correction,named BQ method,was proposed.With this method,the historical precipitation of each model was corrected in space and time,respectively.The correction results were then analyzed in time,space,and analysis of variance(ANOVA)with those corrected by the BP and QM methods,respectively.Finally,the fusion correction method results for each model were compared with the Climatic Research Unit(CRU)data for significance analysis to obtain the trends of precipitation increase and decrease for each model.The results show that the IPSL-CM6A-LR model is relatively good in simulating historical precipitation on the Qinghai-Tibetan Plateau(R=0.7,RSME=0.15)among the uncorrected data.In terms of time,the total precipitation corrected by the fusion method has the same interannual trend and the closest precipitation values to the CRU data;In terms of space,the annual average precipitation corrected by the fusion method has the smallest difference with the CRU data,and the total historical annual average precipitation is not significantly different from the CRU data,which is better than BP and QM.Therefore,the correction effect of the fusion method on the historical precipitation of each model is better than that of the QM and BP methods.The precipitation in the central and northeastern parts of the plateau shows a significant increasing trend.The correlation coefficients between monthly precipitation and site-detected precipitation for all models after BQ correction exceed 0.8.展开更多
Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingda...Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingdao City from 2010 to 2022.Descriptive epidemiologic,seasonal decomposition,spatial autocorrelation,and spatio-temporal cluster analyses were performed.Results A total of 2,220 patients with HFRS were reported over the study period,with an average annual incidence of 1.89/100,000 and a case fatality rate of 2.52%.The male:female ratio was 2.8:1.75.3%of patients were aged between 16 and 60 years old,75.3%of patients were farmers,and 11.6%had both“three red”and“three pain”symptoms.The HFRS epidemic showed two-peak seasonality:the primary fall-winter peak and the minor spring peak.The HFRS epidemic presented highly spatially heterogeneous,street/township-level hot spots that were mostly distributed in Huangdao,Pingdu,and Jiaozhou.The spatio-temporal cluster analysis revealed three cluster areas in Qingdao City that were located in the south of Huangdao District during the fall-winter peak.Conclusion The distribution of HFRS in Qingdao exhibited periodic,seasonal,and regional characteristics,with high spatial clustering heterogeneity.The typical symptoms of“three red”and“three pain”in patients with HFRS were not obvious.展开更多
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne...Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
Population genomic data could provide valuable information for conservation efforts;however,limited studies have been conducted to investigate the genetic status of threatened pheasants.Reeves’s Pheasant(Syrmaticus r...Population genomic data could provide valuable information for conservation efforts;however,limited studies have been conducted to investigate the genetic status of threatened pheasants.Reeves’s Pheasant(Syrmaticus reevesii)is facing population decline,attributed to increases in habitat loss.There is a knowledge gap in understanding the genomic status and genetic basis underlying the local adaptation of this threatened bird.Here,we used population genomic data to assess population structure,genetic diversity,inbreeding patterns,and genetic divergence.Furthermore,we identified candidate genes linked with adaptation across the current distribution of Reeves’s Pheasant.The present study assembled the first de novo genome sequence of Reeves’s Pheasant and annotated 19,458 genes.We also sequenced 30 individuals from three populations(Dabie Mountain,Shennongjia,Qinling Mountain)and found that there was clear population structure among those populations.By comparing with other threatened species,we found that Reeves’s Pheasants have low genetic diversity.Runs of homozygosity suggest that the Shennongjia population has experienced serious inbreeding.The demographic history results indicated that three populations experienced several declines during the glacial period.Local adaptative analysis among the populations identified 241 candidate genes under directional selection.They are involved in a large variety of processes,including the immune response and pigmentation.Our results suggest that the three populations should be considered as three different conservation units.The current study provides genetic evidence for conserving the threatened Reeves’s Pheasant and provides genomic resources for global biodiversity management.展开更多
Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adapta...Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.展开更多
Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the O...Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the OsNCED2 gene between upland and irrigated populations.A nonsynonymous mutation(C to T,from irrigated to upland rice)may have led to functional variation fixed by artificial selection,but the exact biological function in dryland adaptation is unclear.In this study,transgenic and association analysis indicated that the domesticated fixed mutation caused functional variation in OsNCED2,increasing ABA levels,root development,and drought tolerance in upland rice under dryland conditions.OsNCED2-overexpressing rice showed increased reactive oxygen species-scavenging abilities and transcription levels of many genes functioning in stress response and development that may regulate root development and drought tolerance.OsNCED2^(T)-NILs showed a denser root system and drought resistance,promoting the yield of rice under dryland conditions.OsNCED2^(T)may confer dryland adaptation in upland rice and may find use in breeding dryland-adapted,water-saving rice.展开更多
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise...Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.展开更多
White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrien...White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.展开更多
When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada...When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.展开更多
Recent research on the genome of Bifidobacterium bifidum has mainly focused on the isolation sources(intestinal tract niche)recently,but reports on the isolation region are limited.This study analyzed the differences ...Recent research on the genome of Bifidobacterium bifidum has mainly focused on the isolation sources(intestinal tract niche)recently,but reports on the isolation region are limited.This study analyzed the differences in the genome of B.bifidum isolated from different geographical populations by comparative genomic analysis.Results at the genome level indicated that the GC content of American isolates was significantly higher than that of Chinese and Russian isolates.The phylogenetic tree,based on 919 core genes showed that B.bifidum might be related to the geographical characteristics of isolation region.Furthermore,functional annotation analysis demonstrated that copy numbers of carbohydrate-active enzymes(CAZys)involved in the degradation of polysaccharide from plant and host sources in B.bifidum were high,and 18 CAZys showed significant differences across different geographical populations,indicating that B.bifidum had adapted to the human intestinal environment,especially in the groups with diets rich in fiber.Dietary habits were one of the main reasons for the differences of B.bifidum across different geographical populations.Additionally,B.bifidum exhibited high diversity,evident in glycoside hydrolases,the CRISPR-Cas system,and prophages.This study provides a genetic basis for further research and development of B.bifidum.展开更多
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac...Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.展开更多
Crop and livestock production is critical to food security in The Gambia. Over the years, the country has experienced a reduced yield due to perceived climate change events with limited studies on how climate change a...Crop and livestock production is critical to food security in The Gambia. Over the years, the country has experienced a reduced yield due to perceived climate change events with limited studies on how climate change and pollution affect crop production. This study assesses farmers’ knowledge and perceptions of the effects of climate variability and pollution on crop production and their varying adaptation strategies in The Gambia. Both quantitative and qualitative methods were used in this study. The sample size for quantitative data collection was calculated as 432 while the qualitative data involves both the focus group discussions and key informant interviews. The focus group discussions comprised two districts in each of the six agricultural regions and two farming communities engaged in crop production were chosen from each district. Furthermore, eight key informant interviews from relevant institutions were conducted. The study shows that The Gambia is highly vulnerable to extreme climatic events. Although most farmers opined that agricultural land contamination emanates from farm runoff and indiscriminate waste dumping, they had little knowledge of heavy metal pollution and bioremediation. The results showed that farmers experienced constraints such as inadequate access to credit, water, and irrigation facilities, insufficient access to efficient inputs, salt intrusion, etc. which threatened food security. The study concludes that crop farmers acknowledged the existence and impacts of climate change, and therefore recommend the availability and affordability of climate change resilient crops and promote variability awareness campaigns to address climate change impacts in The Gambia.展开更多
AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to devel...AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients.展开更多
DNA methylation plays a crucial role in environmental adaptations.Here,using whole-genome bisulfite sequencing,we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed mo...DNA methylation plays a crucial role in environmental adaptations.Here,using whole-genome bisulfite sequencing,we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey(Rhinopithecus bieti)and the closely related golden snub-nosed monkey(R.roxellana).Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys,suggesting a higher prevalence of hypermethylated genomic regions in the former.Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion,vesicular formation and trafficking,hemoglobin function,cell cycle regulation,and neuronal differentiation.These results suggest that the high-altitude-related epigenetic modifications are extensive,involving a complete adaptation process from the inhibition of single Ca^(2+)channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation.Functional assays demonstrated that overexpression or down-regulation of candidate genes,such as SNX10,TIMELESS,and CACYBP,influenced cell viability under stress conditions.Overall,this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations,thereby deepening our understanding of the mechanisms underlying environmental adaptations.展开更多
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in...Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.展开更多
Background Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones.Nevertheless,the mechanisms by which these signatures...Background Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones.Nevertheless,the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear.Results Here,we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical,high-altitude,and frigid regions.Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds.Analysis of selection signals revealed regions under selection for adaptation in tropical(55.5 Mb),high-altitude(43.6 Mb),and frigid(17.72 Mb)regions.The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments,including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments.Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation.These pathways included blood circulation,protein degradation,and inflammation for adaptation to tropical environments;heart and lung development,hypoxia response,and DNA damage repair for high-altitude adaptation;and thermogenesis,cold-induced vasodilation(CIVD),and the cell cycle for adaptation to frigid environments.By examining the chromatin state of the selection signatures,we identified the lung and ileum as two candidate functional tissues for environmental adaptation.Finally,we identified a mutation(chr1:G246,175,129A)in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments.Conclusions In this study,we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical,high-altitude,and frigid environments.Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.展开更多
基金Youth Innovation Promotion Association CAS,Grant/Award Number:2021103Strategic Priority Research Program of Chinese Academy of Sciences,Grant/Award Number:XDC02060500。
文摘Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
文摘In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical precipitation(1982-2014)on the Qinghai-Tibetan Plateau was evaluated in this study.Results indicate that all models exhibit an overestimation of precipitation through the analysis of the Taylor index,temporal and spatial statistical parameters.To correct the overestimation,a fusion correction method combining the Backpropagation Neural Network Correction(BP)and Quantum Mapping(QM)correction,named BQ method,was proposed.With this method,the historical precipitation of each model was corrected in space and time,respectively.The correction results were then analyzed in time,space,and analysis of variance(ANOVA)with those corrected by the BP and QM methods,respectively.Finally,the fusion correction method results for each model were compared with the Climatic Research Unit(CRU)data for significance analysis to obtain the trends of precipitation increase and decrease for each model.The results show that the IPSL-CM6A-LR model is relatively good in simulating historical precipitation on the Qinghai-Tibetan Plateau(R=0.7,RSME=0.15)among the uncorrected data.In terms of time,the total precipitation corrected by the fusion method has the same interannual trend and the closest precipitation values to the CRU data;In terms of space,the annual average precipitation corrected by the fusion method has the smallest difference with the CRU data,and the total historical annual average precipitation is not significantly different from the CRU data,which is better than BP and QM.Therefore,the correction effect of the fusion method on the historical precipitation of each model is better than that of the QM and BP methods.The precipitation in the central and northeastern parts of the plateau shows a significant increasing trend.The correlation coefficients between monthly precipitation and site-detected precipitation for all models after BQ correction exceed 0.8.
基金supported by the Chinese Field Epidemiology Training Program,the Research and Development of Standards and Standardization of Nomenclature in the Field of Public Health-Research Project on the Development of the Disciplines of Public Health and Preventive Medicine[242402]the Shandong Medical and Health Science and Technology Development Plan[202112050731].
文摘Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingdao City from 2010 to 2022.Descriptive epidemiologic,seasonal decomposition,spatial autocorrelation,and spatio-temporal cluster analyses were performed.Results A total of 2,220 patients with HFRS were reported over the study period,with an average annual incidence of 1.89/100,000 and a case fatality rate of 2.52%.The male:female ratio was 2.8:1.75.3%of patients were aged between 16 and 60 years old,75.3%of patients were farmers,and 11.6%had both“three red”and“three pain”symptoms.The HFRS epidemic showed two-peak seasonality:the primary fall-winter peak and the minor spring peak.The HFRS epidemic presented highly spatially heterogeneous,street/township-level hot spots that were mostly distributed in Huangdao,Pingdu,and Jiaozhou.The spatio-temporal cluster analysis revealed three cluster areas in Qingdao City that were located in the south of Huangdao District during the fall-winter peak.Conclusion The distribution of HFRS in Qingdao exhibited periodic,seasonal,and regional characteristics,with high spatial clustering heterogeneity.The typical symptoms of“three red”and“three pain”in patients with HFRS were not obvious.
基金the National Natural Science Foundation of China(NNSFC)(Grant Nos.72001213 and 72301292)the National Social Science Fund of China(Grant No.19BGL297)the Basic Research Program of Natural Science in Shaanxi Province(Grant No.2021JQ-369).
文摘Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
基金supported by the Biodiversity Survey,Monitoring and Assessment Project(2019–2023)of the Ministry of Ecology and EnvironmentChina(No.2019HB2096001006 to ZZ)+2 种基金the National Natural Science Foundation of China(31672319)Endangered Species Scientific Commission of China(No.2022–331)supported by the China Scholarship Council,China。
文摘Population genomic data could provide valuable information for conservation efforts;however,limited studies have been conducted to investigate the genetic status of threatened pheasants.Reeves’s Pheasant(Syrmaticus reevesii)is facing population decline,attributed to increases in habitat loss.There is a knowledge gap in understanding the genomic status and genetic basis underlying the local adaptation of this threatened bird.Here,we used population genomic data to assess population structure,genetic diversity,inbreeding patterns,and genetic divergence.Furthermore,we identified candidate genes linked with adaptation across the current distribution of Reeves’s Pheasant.The present study assembled the first de novo genome sequence of Reeves’s Pheasant and annotated 19,458 genes.We also sequenced 30 individuals from three populations(Dabie Mountain,Shennongjia,Qinling Mountain)and found that there was clear population structure among those populations.By comparing with other threatened species,we found that Reeves’s Pheasants have low genetic diversity.Runs of homozygosity suggest that the Shennongjia population has experienced serious inbreeding.The demographic history results indicated that three populations experienced several declines during the glacial period.Local adaptative analysis among the populations identified 241 candidate genes under directional selection.They are involved in a large variety of processes,including the immune response and pigmentation.Our results suggest that the three populations should be considered as three different conservation units.The current study provides genetic evidence for conserving the threatened Reeves’s Pheasant and provides genomic resources for global biodiversity management.
文摘Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.
基金This work was supported by the National Natural Science Foundation of China(U1602266,32060474,and 31601274)grants from the Yunnan Provincial Science and Technology Department(202005AF150009 and 202101AS070001).
文摘Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the OsNCED2 gene between upland and irrigated populations.A nonsynonymous mutation(C to T,from irrigated to upland rice)may have led to functional variation fixed by artificial selection,but the exact biological function in dryland adaptation is unclear.In this study,transgenic and association analysis indicated that the domesticated fixed mutation caused functional variation in OsNCED2,increasing ABA levels,root development,and drought tolerance in upland rice under dryland conditions.OsNCED2-overexpressing rice showed increased reactive oxygen species-scavenging abilities and transcription levels of many genes functioning in stress response and development that may regulate root development and drought tolerance.OsNCED2^(T)-NILs showed a denser root system and drought resistance,promoting the yield of rice under dryland conditions.OsNCED2^(T)may confer dryland adaptation in upland rice and may find use in breeding dryland-adapted,water-saving rice.
基金supported by grants from the National Natural Science Foundation of China(NSFC)to YD(32171129)from China Postdoctoral Science Foundation to YC(2023M731112)from NSFC to RG(32260216)。
文摘Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
基金funded by the Shandong Provincial Natural Science Foundation,China (ZR2020QC005)the National Natural Science Foundation of China (32272789)+3 种基金the National Natural Science Foundation of China (32000041)the Shandong Edible Fungus Agricultural Technology System (SDAIT-07-02)the Shandong Provincial Key Research and Development Plan (2021ZDSYS28)the Qingdao Agricultural University Scientific Research Foundation (6631120076)。
文摘White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.
基金supported by the National Natural Science Foundation of China (62206204,62176193)the Natural Science Foundation of Hubei Province,China (2023AFB705)the Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0932)。
文摘When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
基金the National Key R&D Program of China(2022YFD21007002)the National Natural Science Foundation of China(32325040)+1 种基金Inner Mongolia Science&Technology planning project(2022YFSJ0017)the earmarked fund for CARS36.
文摘Recent research on the genome of Bifidobacterium bifidum has mainly focused on the isolation sources(intestinal tract niche)recently,but reports on the isolation region are limited.This study analyzed the differences in the genome of B.bifidum isolated from different geographical populations by comparative genomic analysis.Results at the genome level indicated that the GC content of American isolates was significantly higher than that of Chinese and Russian isolates.The phylogenetic tree,based on 919 core genes showed that B.bifidum might be related to the geographical characteristics of isolation region.Furthermore,functional annotation analysis demonstrated that copy numbers of carbohydrate-active enzymes(CAZys)involved in the degradation of polysaccharide from plant and host sources in B.bifidum were high,and 18 CAZys showed significant differences across different geographical populations,indicating that B.bifidum had adapted to the human intestinal environment,especially in the groups with diets rich in fiber.Dietary habits were one of the main reasons for the differences of B.bifidum across different geographical populations.Additionally,B.bifidum exhibited high diversity,evident in glycoside hydrolases,the CRISPR-Cas system,and prophages.This study provides a genetic basis for further research and development of B.bifidum.
基金Shanxi Scholarship Council of China(2022-141)Fundamental Research Program of Shanxi Province(202203021211096).
文摘Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.
文摘Crop and livestock production is critical to food security in The Gambia. Over the years, the country has experienced a reduced yield due to perceived climate change events with limited studies on how climate change and pollution affect crop production. This study assesses farmers’ knowledge and perceptions of the effects of climate variability and pollution on crop production and their varying adaptation strategies in The Gambia. Both quantitative and qualitative methods were used in this study. The sample size for quantitative data collection was calculated as 432 while the qualitative data involves both the focus group discussions and key informant interviews. The focus group discussions comprised two districts in each of the six agricultural regions and two farming communities engaged in crop production were chosen from each district. Furthermore, eight key informant interviews from relevant institutions were conducted. The study shows that The Gambia is highly vulnerable to extreme climatic events. Although most farmers opined that agricultural land contamination emanates from farm runoff and indiscriminate waste dumping, they had little knowledge of heavy metal pollution and bioremediation. The results showed that farmers experienced constraints such as inadequate access to credit, water, and irrigation facilities, insufficient access to efficient inputs, salt intrusion, etc. which threatened food security. The study concludes that crop farmers acknowledged the existence and impacts of climate change, and therefore recommend the availability and affordability of climate change resilient crops and promote variability awareness campaigns to address climate change impacts in The Gambia.
基金Supported by the Fund for Shanxi“1331 Project”and Supported by Fundamental Research Program of Shanxi Province(No.202203021211006)the Key Research,Development Program of Shanxi Province(No.201903D311009)+4 种基金the Key Research Program of Taiyuan University(No.21TYKZ01)the Open Fund of Shanxi Province Key Laboratory of Ophthalmology(No.2023SXKLOS04)Shenzhen Fund for Guangdong Provincial High-Level Clinical Key Specialties(No.SZGSP014)Sanming Project of Medicine in Shenzhen(No.SZSM202311012)Shenzhen Science and Technology Planning Project(No.KCXFZ20211020163813019).
文摘AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients.
基金supported by the National Natural Science Foundation of China(32330015,31821001)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB31000000)。
文摘DNA methylation plays a crucial role in environmental adaptations.Here,using whole-genome bisulfite sequencing,we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey(Rhinopithecus bieti)and the closely related golden snub-nosed monkey(R.roxellana).Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys,suggesting a higher prevalence of hypermethylated genomic regions in the former.Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion,vesicular formation and trafficking,hemoglobin function,cell cycle regulation,and neuronal differentiation.These results suggest that the high-altitude-related epigenetic modifications are extensive,involving a complete adaptation process from the inhibition of single Ca^(2+)channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation.Functional assays demonstrated that overexpression or down-regulation of candidate genes,such as SNX10,TIMELESS,and CACYBP,influenced cell viability under stress conditions.Overall,this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations,thereby deepening our understanding of the mechanisms underlying environmental adaptations.
基金the Natural Science Foundation of Henan Province(232300420094)the Science and TechnologyResearch Project of Henan Province(222102220092).
文摘Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.
基金supported by the National Key Research and Development Program of China(2021YFF1000600)the National Natural Science Foundation of China(32002150 and U23A20229)+3 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(2020B1515120053)the Shenzhen Science and Technology Innovation Commission(JCYJ20190813114401691)the Central Government Guiding Funds for Local Science and Technology Development of China(He-Ke ZY220603)the Open Project of Hainan Provincial Key Laboratory of Tropical Animal Reproduction&Breeding and Epidemic Disease Research(HKL2020101)。
文摘Background Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones.Nevertheless,the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear.Results Here,we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical,high-altitude,and frigid regions.Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds.Analysis of selection signals revealed regions under selection for adaptation in tropical(55.5 Mb),high-altitude(43.6 Mb),and frigid(17.72 Mb)regions.The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments,including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments.Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation.These pathways included blood circulation,protein degradation,and inflammation for adaptation to tropical environments;heart and lung development,hypoxia response,and DNA damage repair for high-altitude adaptation;and thermogenesis,cold-induced vasodilation(CIVD),and the cell cycle for adaptation to frigid environments.By examining the chromatin state of the selection signatures,we identified the lung and ileum as two candidate functional tissues for environmental adaptation.Finally,we identified a mutation(chr1:G246,175,129A)in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments.Conclusions In this study,we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical,high-altitude,and frigid environments.Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.