期刊文献+
共找到2,347篇文章
< 1 2 118 >
每页显示 20 50 100
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:2
1
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling adaptive physics-informed loss function High generalization capability
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
2
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 adaptive COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
The prediction of projectile-target intersection for moving tank based on adaptive robust constraint-following control and interval uncertainty analysis
3
作者 Cong Li Xiuye Wang +2 位作者 Yuze Ma Fengjie Xu Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期351-363,共13页
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method... To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error. 展开更多
关键词 Tank stability control Constraint-following adaptive robust control Uncertainty analysis prediction of projectile-target intersection
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
4
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 adaptive adjacency matrix Digital twin Graph convolutional network Multivariate time series prediction Spatial-temporal graph
下载PDF
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
5
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 spatio-temporal prediction infectious diseases graph neural networks
下载PDF
Adaptive Momentum-Backpropagation Algorithm for Flood Prediction and Management in the Internet of Things
6
作者 Jayaraj Thankappan Delphin Raj Kesari Mary +1 位作者 Dong Jin Yoon Soo-Hyun Park 《Computers, Materials & Continua》 SCIE EI 2023年第10期1053-1079,共27页
Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The... Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The traditional flood prediction techniques often encounter challenges in accuracy,timeliness,complexity in handling dynamic flood patterns and leading to substandard flood management strategies.To address these challenges,there is a need for advanced machine learning models that can effectively analyze Internet of Things(IoT)-generated flood data and provide timely and accurate flood predictions.This paper proposes a novel approach-the Adaptive Momentum and Backpropagation(AM-BP)algorithm-for flood prediction and management in IoT networks.The AM-BP model combines the advantages of an adaptive momentum technique with the backpropagation algorithm to enhance flood prediction accuracy and efficiency.Real-world flood data is used for validation,demonstrating the superior performance of the AM-BP algorithm compared to traditional methods.In addition,multilayer high-end computing architecture(MLCA)is used to handle weather data such as rainfall,river water level,soil moisture,etc.The AM-BP’s real-time abilities enable proactive flood management,facilitating timely responses and effective disaster mitigation.Furthermore,the AM-BP algorithm can analyze large and complex datasets,integrating environmental and climatic factors for more accurate flood prediction.The evaluation result shows that the AM-BP algorithm outperforms traditional approaches with an accuracy rate of 96%,96.4%F1-Measure,97%Precision,and 95.9%Recall.The proposed AM-BP model presents a promising solution for flood prediction and management in IoT networks,contributing to more resilient and efficient flood control strategies,and ensuring the safety and well-being of communities at risk of flooding. 展开更多
关键词 Internet of Things flood prediction artificial neural network adaptive momentum backpropagation OPTIMIZATION disaster management
下载PDF
Prediction of film ratings based on domain adaptive transfer learning
7
作者 舒展 DUAN Yong 《High Technology Letters》 EI CAS 2023年第1期98-104,共7页
This paper examines the prediction of film ratings.Firstly,in the data feature engineering,feature construction is performed based on the original features of the film dataset.Secondly,the clustering algorithm is util... This paper examines the prediction of film ratings.Firstly,in the data feature engineering,feature construction is performed based on the original features of the film dataset.Secondly,the clustering algorithm is utilized to remove singular film samples,and feature selections are carried out.When solving the problem that film samples of the target domain are unlabelled,it is impossible to train a model and address the inconsistency in the feature dimension for film samples from the source domain.Therefore,the domain adaptive transfer learning model combined with dimensionality reduction algorithms is adopted in this paper.At the same time,in order to reduce the prediction error of models,the stacking ensemble learning model for regression is also used.Finally,through comparative experiments,the effectiveness of the proposed method is verified,which proves to be better predicting film ratings in the target domain. 展开更多
关键词 prediction of film rating domain adaptive transfer component analysis(TCA) correlation alignment(CORAL) stacking
下载PDF
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
8
作者 Jia-Jun Zhong Yong Ma +3 位作者 Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期53-69,共17页
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial... Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics. 展开更多
关键词 Graph neural network Multi-head attention mechanism spatio-temporal dependency Traffic flow prediction
下载PDF
Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation
9
作者 Yuanjun Dai Haonan Li Baohua Li 《Energy Engineering》 EI 2024年第6期1607-1636,共30页
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w... This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect. 展开更多
关键词 Micro wind-hydrogen coupling system ultra-short-term wind power prediction sigmoid-PSO algorithm adaptive roll optimization predictive control strategy
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
10
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
11
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
12
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
下载PDF
CSI Feedback-based CS for Underwater Acoustic Adaptive Modulation OFDM System with Channel Prediction 被引量:3
13
作者 蒯小燕 孙海信 +4 位作者 齐洁 程恩 许小卡 郭瑜辉 陈友淦 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期391-400,共10页
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of ... In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method. 展开更多
关键词 adaptive modulation OFDM CSI feedback compressed sensing channel prediction underwater acoustic channels
下载PDF
Bottleneck Prediction Method Based on Improved Adaptive Network-based Fuzzy Inference System (ANFIS) in Semiconductor Manufacturing System 被引量:4
14
作者 曹政才 邓积杰 +1 位作者 刘民 王永吉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1081-1088,共8页
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon... Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method. 展开更多
关键词 semiconductor manufacturing system bottleneck prediction adaptive network-based fuzzy inference system
下载PDF
An Intelligent Neural Networks System for Adaptive Learning and Prediction of a Bioreactor Benchmark Process 被引量:2
15
作者 邹志云 于德弘 +2 位作者 冯文强 于鲁平 郭宁 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期62-66,共5页
The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real ... The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor. 展开更多
关键词 intelligent system neural networks adaptive learning adaptive prediction bioreactor process
下载PDF
Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms 被引量:7
16
作者 Wei Fang Yupeng Chen Qiongying Xue 《Journal on Big Data》 2021年第3期97-110,共14页
In the past few years,deep learning has developed rapidly,and many researchers try to combine their subjects with deep learning.The algorithm based on Recurrent Neural Network(RNN)has been successfully applied in the ... In the past few years,deep learning has developed rapidly,and many researchers try to combine their subjects with deep learning.The algorithm based on Recurrent Neural Network(RNN)has been successfully applied in the fields of weather forecasting,stock forecasting,action recognition,etc.because of its excellent performance in processing Spatio-temporal sequence data.Among them,algorithms based on LSTM and GRU have developed most rapidly because of their good design.This paper reviews the RNN-based Spatio-temporal sequence prediction algorithm,introduces the development history of RNN and the common application directions of the Spatio-temporal sequence prediction,and includes precipitation nowcasting algorithms and traffic flow forecasting algorithms.At the same time,it also compares the advantages and disadvantages,and innovations of each algorithm.The purpose of this article is to give readers a clear understanding of solutions to such problems.Finally,it prospects the future development of RNN in the Spatio-temporal sequence prediction algorithm. 展开更多
关键词 RNN LSTM GRU spatio-temporal sequence prediction
下载PDF
EXPERT SYSTEM FOR SINTER CHEMICAL COMPOSITION CONTROL BASED ON ADAPTIVE PREDICTION 被引量:1
17
作者 Fan Xiaohui Wang Haidong +4 位作者 Chen Jin Huang Tianzheng Yang Shinong Wang Yueli Zheng Tianzhong 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1996年第1期47-50,共4页
In order to stabilize the sinter chemical composition,the expert system for composition control based on adaptive prediction has been developed on the basis of modern control theory and artificial intelligence.It has ... In order to stabilize the sinter chemical composition,the expert system for composition control based on adaptive prediction has been developed on the basis of modern control theory and artificial intelligence.It has been verified by using real data at No.3 Sintering Plant of Anshan Iron and Steel Co.,and satisfactory results have been obtained. 展开更多
关键词 SINTER chemical composition adaptive prediction expert system for control
下载PDF
Prediction of Rural Residents’ Consumption Expenditure Based on Lasso and Adaptive Lasso Methods 被引量:1
18
作者 Xiaoting Tao Haomin Zhang 《Open Journal of Statistics》 2016年第6期1166-1173,共8页
When the variable of model is large, the Lasso method and the Adaptive Lasso method can effectively select variables. This paper prediction the rural residents’ consumption expenditure in China, based on respectively... When the variable of model is large, the Lasso method and the Adaptive Lasso method can effectively select variables. This paper prediction the rural residents’ consumption expenditure in China, based on respectively using the Lasso method and the Adaptive Lasso method. The results showed that both can effectively and accurately choose the appropriate variable, but the Adaptive Lasso method is better than the Lasso method in prediction accuracy and prediction error. It shows that in variable selection and parameter estimation, Adaptive Lasso method is better than the Lasso method. 展开更多
关键词 Lasso Method adaptive Lasso Method CONSUMPTION prediction
下载PDF
LINEAR PREDICTION APPROACH IN AIRBORNE ADAPTIVE ARRAYS
19
作者 Su Jie Li Chunsheng Zhou Yinqing(Department of Electronic Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第1期64-70,共7页
To cope with the time-varying and Dopper-broadened clutter in airborne phase array radars, it is required that the signal processing should be adaptive and two-dimensional both in time and in space. However, the optim... To cope with the time-varying and Dopper-broadened clutter in airborne phase array radars, it is required that the signal processing should be adaptive and two-dimensional both in time and in space. However, the optimum two-dimensional adaptive processing is hard to realize real-timely because it requires a large amount of computation. From the idea of approximating the clutter process by using an auto regressive process, a linear prediction approach is proposed to realize the adaptive space-time processing of airborne adaptive array signals. The research shows that the clutter process can be well approximated by a low-order AR process, so a low-order linear prediction receiver can get a sub-optimum performance at a very low expense. Besides, the low-order linear prediction receiver has additional degrees of freedom to cope with other colored noises and interferences. In consideration of the many advantages of the linear prediction receiver in both algorithms and realizations, it has a good prospect in its application to air borne adaptive array signal processing. 展开更多
关键词 signal processing phased arrays RADAR linear prediction adaptive filters
下载PDF
Adaptive Neighboring Selection Algorithm Based on Curvature Prediction in Manifold Learning
20
作者 Lin Ma Cai-Fa Zhou +1 位作者 Xi Liu Yu-Bin Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期119-123,共5页
Recently manifold learning algorithm for dimensionality reduction attracts more and more interests, and various linear and nonlinear,global and local algorithms are proposed. The key step of manifold learning algorith... Recently manifold learning algorithm for dimensionality reduction attracts more and more interests, and various linear and nonlinear,global and local algorithms are proposed. The key step of manifold learning algorithm is the neighboring region selection. However,so far for the references we know,few of which propose a generally accepted algorithm to well select the neighboring region. So in this paper,we propose an adaptive neighboring selection algorithm,which successfully applies the LLE and ISOMAP algorithms in the test. It is an algorithm that can find the optimal K nearest neighbors of the data points on the manifold. And the theoretical basis of the algorithm is the approximated curvature of the data point on the manifold. Based on Riemann Geometry,Jacob matrix is a proper mathematical concept to predict the approximated curvature. By verifying the proposed algorithm on embedding Swiss roll from R3 to R2 based on LLE and ISOMAP algorithm,the simulation results show that the proposed adaptive neighboring selection algorithm is feasible and able to find the optimal value of K,making the residual variance relatively small and better visualization of the results. By quantitative analysis,the embedding quality measured by residual variance is increased 45. 45% after using the proposed algorithm in LLE. 展开更多
关键词 manifold learning curvature prediction adaptive neighboring selection residual variance
下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部