In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imag...In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imaging.The LST was retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)night-time thermal-infrared data by a robust split-window algorithm based on scene-specific regression coefficients,band-specific hybrid emissivity,and night-time atmospheric transmittance.The LST-profile-based coal fire detection algorithm was formulated through statistical analysis of the LST values along multiple transects across diverse coal fire locations in the JCF in order to compute date-specific threshold temperatures for separating thermally-anomalous and background pixels.This algorithm efficiently separates surface fire,subsurface fire,and thermally-anomalous transitional pixels.During the observation period,it was noticed that the coal fire area increased significantly,which resulted from new coal fire at many places owing to extensive opencast-mining operations.It was observed that the fire propagation occurred primarily along the dip direction of the coal seams.At places,lateral-propagation of limited spatial extent was also observed along the strike direction possibly due to spatial continuity of the coal seams along strike.Moreover,the opencast-mining activities carried out during 2009–2015 and the structurally weak planes facilitated the fire propagation.展开更多
To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral load...To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral loads.Using micro camera,acoustic emission(AE)system,and infrared thermal imager,the AE characteristics and thermal radiation temperature migration were studied during the rockburst process.Then,the failure mode and damage evolution of the surrounding rock were analyzed.The results demonstrate that increasing the lateral load can first increase and then reduce the bearing capacity of the hole.In this experiment,the hole failure process could be divided into four periods:quiet,particle ejection,stability failure and collapse.Correspondingly,the AE signals evolved from a calm stage,to have intermittent appearance;then,they were continuous with a sudden increase,and finally increased dramatically.The failure of the surrounding rock was mainly tensile failure,while shear failure tended to first increase and then decrease.Meanwhile,damage to the hole increased gradually during the particle ejection period,whereas damage to the rockburst mainly occurred in the stability failure period.The thermal radiation temperature migration exhibited warming in shallow parts,inward expansion,cooling in the shallow parts with free surface heating,inward expansion,a sudden rise in temperature of the rockburst pits,and finally specimen failure.The initial reinforcement support should fully contribute to surface support.Furthermore,an appropriate tensile capacity and good energy absorption capacity should be established in support systems for high-stress roadways.展开更多
Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic c...Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic con- version matrix of land use is thus calculated. The areas of construction land and water body have increased by 1833.93 hm2 and 804.87 hm2, respectively. On the contrary, the area of cropland has decreased by 3207.24 hm2. The area of cropland converted into construction land makes up 26.84%, and that converted into water body amounts for 8.17% of the total area of cropland in 1994. The variation index of land use degree and the dynamic degree index of land use computed are 1.38 and 57.81%, respectively, which demonstrate that land use in Xuzhou is in a development period and the changes are drastic. The frequency index and importance index of the form in which cropland converted into con- struction land are 29.91% and 68.93% respectively. The results indicate that the change is not only widespread in space but a major form of spatial change of land use in the area.展开更多
The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satell...The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr(2011–2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October(99.05%) through median in June/July(78.09%/75.21%) to lowest in January(18.97%), and a large data-vacant area exists in the study area during four consecutive winter months(December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane(PP)±30°(nPP) or cross PP ±30°(nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months(September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.展开更多
Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping f...Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping field into uniformly manageable zones, based on quantitative measurement of yield limiting factors. In Mediterranean environments, the spatial and temporal yield variability of rain-fed cropping system is strongly influenced by the spatial variability of Plant Available Water-holding Capacity (PAWC) and its strong interaction with temporally variable seasonal rainfall. The successful adoption of SSCM depends on the understanding of both spatial and temporal variabilities in cropping fields. Remote sensing phenological metrics provide information about the biophysical growth conditions of crops across fields. In this paper, we examine the potential of phenological metrics to assess the spatial and temporal crop yield variability across a wheat cropping field at Minnipa, South Australia. The Minnipa field was classified into three management zones using prolonged observations including soil assessment and multiple year yield data. The main analytical steps followed in this study were: calculation of the phenological metrics using time series NDVI data from Moderate Resolution Imaging Spectroscope (MODIS) for 15 years (2001-2015);producing spatial trend and temporal variability maps of phenological metrics;and finally, assessment of association between the spatial patterns and temporal variability of the metrics with management zones of the cropping field. The spatial trend of the seasonal peak NDVI metric showed significant association with the management zone pattern. In terms of temporal variability, Time-integrated NDVI (TINDVI) showed higher variability in the “good” zone compared with the “poor” zone. This indicates that the magnitude of the seasonal peak is more sensitive to soil related factors across the field, whereas TINDVI is more sensitive to seasonal variability. The interpretation of the association between phenological metrics and the management zone site conditions was discussed in relation to soil-climate interaction. The results demonstrate the potential of the phenological metrics to assess the spatial and temporal variability across cropping fields and to understand the soil-climate interaction. The approach presented in this paper provides a pathway to utilize phenological metrics for precision agricultural management application.展开更多
Background:The goal of the assisted reproductive treatment is to transfer one euploid blastocyst and to help infertile women giving birth one healthy neonate.Some algorithms have been used to assess the ploidy status ...Background:The goal of the assisted reproductive treatment is to transfer one euploid blastocyst and to help infertile women giving birth one healthy neonate.Some algorithms have been used to assess the ploidy status of embryos derived from couples with normal chromosome,who subjected to preimplantation genetic testing for aneuploidy(PGT-A)treatment.However,it is currently unknown whether artificial intelligence model can be used to assess the euploidy status of blastocyst derived from populations with chromosomal rearrangement.Methods:From February 2020 to May 2021,we collected the whole raw time-lapse videos at multiple focal planes from in vitro cultured embryos,the clinical information of couples,and the comprehensive chromosome screening results of those blastocysts that had received PGT treatment.Initially,we developed a novel deep learning model called the Attentive Multi-Focus Selection Network(AMSNet)to analyze time-lapse videos in real time and predict blastocyst formation.Building upon AMSNet,we integrated additional clinically predictive variables and created a second deep learning model,the Attentive Multi-Focus Video and Clinical Information Fusion Network(AMCFNet),to assess the euploidy status of embryos.The efficacy of the AMCFNet was further tested in embryos with parental chromosomal rearrangements.The receiver operating characteristic curve(ROC)was used to evaluate the superiority of the model.Results:A total of 4112 embryos with complete time-lapse videos were enrolled for the blastocyst formation prediction task,and 1422 qualified blastocysts received PGT-A(n=589)or PGT for chromosomal structural rearrangement(PGT-SR,n=833)were enrolled for the euploidy assessment task in this study.The AMSNet model using seven focal raw time-lapse videos has the best real-time accuracy.The real-time accuracy for AMSNet to predict blastocyst formation reached above 70%on the day 2 of embryo culture,and then increased to 80%on the day 4 of embryo culture.Combing with 4 clinical features of couples,the AUC of AMCFNet with 7 focal points increased to 0.729 in blastocysts derived from couples with chromosomal rearrangement.Conclusion:Integrating seven focal raw time-lapse images of embryos and parental clinical information,AMCFNet model have the capability of assessing euploidy status in blastocysts derived from couples with chromosomal rearrangement.展开更多
Landuse and land cover change is regarded as a good indicator that represents the impact of human activities on earth’s environment.When the large collection of multi-temporal satellite images has become available,it...Landuse and land cover change is regarded as a good indicator that represents the impact of human activities on earth’s environment.When the large collection of multi-temporal satellite images has become available,it is possible to study a long-term historical process of land cover change.This study aims to investigate the spatio-temporal pattern and driving force of land cover change in the Pearl River Delta region in southern China,where the rapid development has been witnessed since 1980s.The fast economic growth has been associated with an accelerated expansion of urban landuse,which has been recorded by historical remote sensing images.This paper reports the method and outcome of the research that attempts to model spatio-temporal pattern of land cover change using multi-temporal satellite images.The classified satellite images were compared to detect the change from various landuse types to built-up areas.The trajectories of land cover change have then been established based on the time-series of the classified land cover classes.The correlation between the expansion of built-up areas and selected economic data has also been analysed for better understanding on the driving force of the rapid urbanisation process.The result shows that,since early 1990s,the dominant trend of land cover change has been from farmland to urban landuse.The relationship between economic growth indicator(measured by GDP)and built-up area can well fit into a linear regression model with correlation coefficients greater than 0.9.It is quite clear that cities or towns have been sprawling in general,demonstrating two growth models that were closely related to the economic development stages.展开更多
Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propos...Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN.展开更多
The objective of the study was to develop a remote sensing (i.e., Landsat-8 and MODIS)-based agricultural drought indicator (ADI) at 30-m spatial resolution and 8-day temporal resolution and also to evaluate its p...The objective of the study was to develop a remote sensing (i.e., Landsat-8 and MODIS)-based agricultural drought indicator (ADI) at 30-m spatial resolution and 8-day temporal resolution and also to evaluate its performance over a heterogeneous agriculture dominant semi-arid region in Jordan. Firstly, we used principal component analysis (PCA) to evaluate the correlations among six commonly used remote sensing-derived agricultural drought related variables. The variables included normalized difference water index (NDWI), normalized difference vegetation index (NDVI), visible and shortwave drought index (VSDI), normalized multiband drought index (NMDI), moisture stress index (MSI), and land surface temperature (LST). Secondly, we integrated the relatively less correlated variables (that were found to be NDWI, VSDI, and LST) to generate four agricultural drought categories/conditions (i.e., wet, mild drought, moderate drought, and severe drought). Finally, we evaluated the ADI maps against a set of 8-day ground-based standardized precipitation index values (i.e., SPI-I, SPI-2, ..., SPLS) by use of confusion matrices and observed the best results for SPI-4 (i.e., overall accuracy and Kappa-values were 83% and 76%, respectively) and SPI-5 (i.e., overall accuracy and Kappa-values were 85% and 78%, respectively). The results demonstrated that the method would be valuable for monitoring agricultural drought conditions in semi-arid regions at both a reasonably high spatial resolution (i.e., 30-m) and a short time period (i.e., 8-day).展开更多
Light springs(LSs) have played essential roles in particle rotation and manipulation, optical super-resolution imaging, and optical information coding. In related research areas, it is important to accurately measure ...Light springs(LSs) have played essential roles in particle rotation and manipulation, optical super-resolution imaging, and optical information coding. In related research areas, it is important to accurately measure spatiotemporal information on LSs to understand and analyze their applications. However, there is no experimental method that can accurately detect the drastic spatial evolution of ultrafast LSs to date. Therefore, in this study, we propose a compressed ultrafast photography(CUP) technique to observe LSs in spatial and temporal dimensions with a snapshot. Using our home-built CUP system, we successfully capture spatiotemporal information on picosecond LSs with two and four petals, involving spatial structure and rotation velocity;furthermore, the experimental measurements are in good agreement with theoretical simulations. This study provides a novel visualization method for specifically measuring the spatial structure and temporal evolution of LSs, thus establishing a new idea for accurately characterizing spatiotemporal information on complex ultrafast laser fields.展开更多
文摘In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imaging.The LST was retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)night-time thermal-infrared data by a robust split-window algorithm based on scene-specific regression coefficients,band-specific hybrid emissivity,and night-time atmospheric transmittance.The LST-profile-based coal fire detection algorithm was formulated through statistical analysis of the LST values along multiple transects across diverse coal fire locations in the JCF in order to compute date-specific threshold temperatures for separating thermally-anomalous and background pixels.This algorithm efficiently separates surface fire,subsurface fire,and thermally-anomalous transitional pixels.During the observation period,it was noticed that the coal fire area increased significantly,which resulted from new coal fire at many places owing to extensive opencast-mining operations.It was observed that the fire propagation occurred primarily along the dip direction of the coal seams.At places,lateral-propagation of limited spatial extent was also observed along the strike direction possibly due to spatial continuity of the coal seams along strike.Moreover,the opencast-mining activities carried out during 2009–2015 and the structurally weak planes facilitated the fire propagation.
基金Project(2017YFC0603003)supported by the National Key Research and Development Project of ChinaProjects(51974009,51674008)supported by the National Natural Science Foundation of China+3 种基金Project(201904a07020010)supported by the Key Research and Development Program of Anhui Province,ChinaProject(2018D187)supported by the Leading Talent Project of Anhui“Special Support Program”,Anhui Provincial Academic and Technology Leaders Research Activities Funding,ChinaProject(gxbjZD2016051)supported by the Excellence Talent Training Program of High School,ChinaProject(2019CX2008)supported by the Graduate Innovation Fund of Anhui University of Science and Technology,China。
文摘To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral loads.Using micro camera,acoustic emission(AE)system,and infrared thermal imager,the AE characteristics and thermal radiation temperature migration were studied during the rockburst process.Then,the failure mode and damage evolution of the surrounding rock were analyzed.The results demonstrate that increasing the lateral load can first increase and then reduce the bearing capacity of the hole.In this experiment,the hole failure process could be divided into four periods:quiet,particle ejection,stability failure and collapse.Correspondingly,the AE signals evolved from a calm stage,to have intermittent appearance;then,they were continuous with a sudden increase,and finally increased dramatically.The failure of the surrounding rock was mainly tensile failure,while shear failure tended to first increase and then decrease.Meanwhile,damage to the hole increased gradually during the particle ejection period,whereas damage to the rockburst mainly occurred in the stability failure period.The thermal radiation temperature migration exhibited warming in shallow parts,inward expansion,cooling in the shallow parts with free surface heating,inward expansion,a sudden rise in temperature of the rockburst pits,and finally specimen failure.The initial reinforcement support should fully contribute to surface support.Furthermore,an appropriate tensile capacity and good energy absorption capacity should be established in support systems for high-stress roadways.
基金Projects 40401038 supported by National Natural Science Foundation of China, and 05KJB420133 by Natural Science Foundation for Colleges and Universities in Jiangsu Province
文摘Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic con- version matrix of land use is thus calculated. The areas of construction land and water body have increased by 1833.93 hm2 and 804.87 hm2, respectively. On the contrary, the area of cropland has decreased by 3207.24 hm2. The area of cropland converted into construction land makes up 26.84%, and that converted into water body amounts for 8.17% of the total area of cropland in 1994. The variation index of land use degree and the dynamic degree index of land use computed are 1.38 and 57.81%, respectively, which demonstrate that land use in Xuzhou is in a development period and the changes are drastic. The frequency index and importance index of the form in which cropland converted into con- struction land are 29.91% and 68.93% respectively. The results indicate that the change is not only widespread in space but a major form of spatial change of land use in the area.
基金Under the auspices the Fundamental Research Funds for the Central Universities,China(No.2017TD-26)the Plan for Changbai Mountain Scholars of Jilin Province,China(No.JJLZ[2015]54)
文摘The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr(2011–2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October(99.05%) through median in June/July(78.09%/75.21%) to lowest in January(18.97%), and a large data-vacant area exists in the study area during four consecutive winter months(December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane(PP)±30°(nPP) or cross PP ±30°(nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months(September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.
文摘Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping field into uniformly manageable zones, based on quantitative measurement of yield limiting factors. In Mediterranean environments, the spatial and temporal yield variability of rain-fed cropping system is strongly influenced by the spatial variability of Plant Available Water-holding Capacity (PAWC) and its strong interaction with temporally variable seasonal rainfall. The successful adoption of SSCM depends on the understanding of both spatial and temporal variabilities in cropping fields. Remote sensing phenological metrics provide information about the biophysical growth conditions of crops across fields. In this paper, we examine the potential of phenological metrics to assess the spatial and temporal crop yield variability across a wheat cropping field at Minnipa, South Australia. The Minnipa field was classified into three management zones using prolonged observations including soil assessment and multiple year yield data. The main analytical steps followed in this study were: calculation of the phenological metrics using time series NDVI data from Moderate Resolution Imaging Spectroscope (MODIS) for 15 years (2001-2015);producing spatial trend and temporal variability maps of phenological metrics;and finally, assessment of association between the spatial patterns and temporal variability of the metrics with management zones of the cropping field. The spatial trend of the seasonal peak NDVI metric showed significant association with the management zone pattern. In terms of temporal variability, Time-integrated NDVI (TINDVI) showed higher variability in the “good” zone compared with the “poor” zone. This indicates that the magnitude of the seasonal peak is more sensitive to soil related factors across the field, whereas TINDVI is more sensitive to seasonal variability. The interpretation of the association between phenological metrics and the management zone site conditions was discussed in relation to soil-climate interaction. The results demonstrate the potential of the phenological metrics to assess the spatial and temporal variability across cropping fields and to understand the soil-climate interaction. The approach presented in this paper provides a pathway to utilize phenological metrics for precision agricultural management application.
基金supported by grants from the National Natural Science Found of China(No.81270750)Natural Science Found of Guangdong China(No.2019A1515011845)+1 种基金Stem Cell Research Founding from Chinese Medical Association(No.19020010780)Sun Yat-sen University 5010 Clinical Research Project(No.2023003).
文摘Background:The goal of the assisted reproductive treatment is to transfer one euploid blastocyst and to help infertile women giving birth one healthy neonate.Some algorithms have been used to assess the ploidy status of embryos derived from couples with normal chromosome,who subjected to preimplantation genetic testing for aneuploidy(PGT-A)treatment.However,it is currently unknown whether artificial intelligence model can be used to assess the euploidy status of blastocyst derived from populations with chromosomal rearrangement.Methods:From February 2020 to May 2021,we collected the whole raw time-lapse videos at multiple focal planes from in vitro cultured embryos,the clinical information of couples,and the comprehensive chromosome screening results of those blastocysts that had received PGT treatment.Initially,we developed a novel deep learning model called the Attentive Multi-Focus Selection Network(AMSNet)to analyze time-lapse videos in real time and predict blastocyst formation.Building upon AMSNet,we integrated additional clinically predictive variables and created a second deep learning model,the Attentive Multi-Focus Video and Clinical Information Fusion Network(AMCFNet),to assess the euploidy status of embryos.The efficacy of the AMCFNet was further tested in embryos with parental chromosomal rearrangements.The receiver operating characteristic curve(ROC)was used to evaluate the superiority of the model.Results:A total of 4112 embryos with complete time-lapse videos were enrolled for the blastocyst formation prediction task,and 1422 qualified blastocysts received PGT-A(n=589)or PGT for chromosomal structural rearrangement(PGT-SR,n=833)were enrolled for the euploidy assessment task in this study.The AMSNet model using seven focal raw time-lapse videos has the best real-time accuracy.The real-time accuracy for AMSNet to predict blastocyst formation reached above 70%on the day 2 of embryo culture,and then increased to 80%on the day 4 of embryo culture.Combing with 4 clinical features of couples,the AUC of AMCFNet with 7 focal points increased to 0.729 in blastocysts derived from couples with chromosomal rearrangement.Conclusion:Integrating seven focal raw time-lapse images of embryos and parental clinical information,AMCFNet model have the capability of assessing euploidy status in blastocysts derived from couples with chromosomal rearrangement.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2006CB701304)Research Grants Council General Research Fund of Hong Kong(Grant No.HKBU2029/07P)Hong Kong Baptist University Faculty Research Grant(Grant No.FRG/06-07/II-76)
文摘Landuse and land cover change is regarded as a good indicator that represents the impact of human activities on earth’s environment.When the large collection of multi-temporal satellite images has become available,it is possible to study a long-term historical process of land cover change.This study aims to investigate the spatio-temporal pattern and driving force of land cover change in the Pearl River Delta region in southern China,where the rapid development has been witnessed since 1980s.The fast economic growth has been associated with an accelerated expansion of urban landuse,which has been recorded by historical remote sensing images.This paper reports the method and outcome of the research that attempts to model spatio-temporal pattern of land cover change using multi-temporal satellite images.The classified satellite images were compared to detect the change from various landuse types to built-up areas.The trajectories of land cover change have then been established based on the time-series of the classified land cover classes.The correlation between the expansion of built-up areas and selected economic data has also been analysed for better understanding on the driving force of the rapid urbanisation process.The result shows that,since early 1990s,the dominant trend of land cover change has been from farmland to urban landuse.The relationship between economic growth indicator(measured by GDP)and built-up area can well fit into a linear regression model with correlation coefficients greater than 0.9.It is quite clear that cities or towns have been sprawling in general,demonstrating two growth models that were closely related to the economic development stages.
基金supported by the National Natural Science Foundation of China[grant number 41671452].
文摘Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN.
基金the University of Calgary, Canada and Yarmouk University, Jordan for providing partial financial support in the form of awards to Mr. Khaled HAZAYMEH and the National Sciences and Engineering Research Council (NSERC), Canada for a Discovery grant to Dr. Quazi HASSAN
文摘The objective of the study was to develop a remote sensing (i.e., Landsat-8 and MODIS)-based agricultural drought indicator (ADI) at 30-m spatial resolution and 8-day temporal resolution and also to evaluate its performance over a heterogeneous agriculture dominant semi-arid region in Jordan. Firstly, we used principal component analysis (PCA) to evaluate the correlations among six commonly used remote sensing-derived agricultural drought related variables. The variables included normalized difference water index (NDWI), normalized difference vegetation index (NDVI), visible and shortwave drought index (VSDI), normalized multiband drought index (NMDI), moisture stress index (MSI), and land surface temperature (LST). Secondly, we integrated the relatively less correlated variables (that were found to be NDWI, VSDI, and LST) to generate four agricultural drought categories/conditions (i.e., wet, mild drought, moderate drought, and severe drought). Finally, we evaluated the ADI maps against a set of 8-day ground-based standardized precipitation index values (i.e., SPI-I, SPI-2, ..., SPLS) by use of confusion matrices and observed the best results for SPI-4 (i.e., overall accuracy and Kappa-values were 83% and 76%, respectively) and SPI-5 (i.e., overall accuracy and Kappa-values were 85% and 78%, respectively). The results demonstrated that the method would be valuable for monitoring agricultural drought conditions in semi-arid regions at both a reasonably high spatial resolution (i.e., 30-m) and a short time period (i.e., 8-day).
基金supported by the National Natural Science Foundation of China(Grant Nos.91850202,12074121,11774094,11804097,62105101,62175066,92050203,11727810,and 12034008)Science and Technology Commission of Shanghai Municipality(Grant Nos.19560710300,20ZR1417100,and 21XD1400900)。
文摘Light springs(LSs) have played essential roles in particle rotation and manipulation, optical super-resolution imaging, and optical information coding. In related research areas, it is important to accurately measure spatiotemporal information on LSs to understand and analyze their applications. However, there is no experimental method that can accurately detect the drastic spatial evolution of ultrafast LSs to date. Therefore, in this study, we propose a compressed ultrafast photography(CUP) technique to observe LSs in spatial and temporal dimensions with a snapshot. Using our home-built CUP system, we successfully capture spatiotemporal information on picosecond LSs with two and four petals, involving spatial structure and rotation velocity;furthermore, the experimental measurements are in good agreement with theoretical simulations. This study provides a novel visualization method for specifically measuring the spatial structure and temporal evolution of LSs, thus establishing a new idea for accurately characterizing spatiotemporal information on complex ultrafast laser fields.