Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time s...Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time series of process variables may have an important indication about the process operation.For example,in a batch process,the change points can correspond to the operations and phases defined by the batch recipe.Hence identifying change points can assist labelling the time series data.Various unsupervised algorithms have been developed for change point detection,including the optimisation approachwhich minimises a cost functionwith certain penalties to search for the change points.The Bayesian approach is another,which uses Bayesian statistics to calculate the posterior probability of a specific sample being a change point.The paper investigates how the two approaches for change point detection can be applied to process data analytics.In addition,a new type of cost function using Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by randomness in the data.The novelty lies in using regularisation-based cost functions to handle ill-posed problems of noisy data.The results demonstrate that change point detection is useful for process data analytics because change points can produce data segments corresponding to different operating modes or varying conditions,which will be useful for other machine learning tasks.展开更多
Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last...Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods.展开更多
A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection techn...A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.展开更多
Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image pro...Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image processing methods have poor adaptability to pollution and complex backgrounds.Although deep learning-based methods can automatically extract features,the bounding boxes cannot entirely fit the contour of the code.Further image processing methods are required for precise positioning,which will reduce efficiency.Because of the above problems,a CenterNet-based DM code key point detection network is proposed,which can directly obtain the four key points of the DM code.Compared with the existing methods,the degree of fitness is higher,which is conducive to direct decoding.To further improve the positioning accuracy,an enhanced loss function is designed,including DM code key point heatmap loss,standard DM code projection loss,and polygon Intersection-over-Union(IoU)loss,which is beneficial for the network to learn the spatial geometric characteristics of DM code.The experiment is carried out on the self-made DM code key point detection dataset,including pollution,complex background,small objects,etc.,which uses the Average Precision(AP)of the common object detection metric as the evaluation metric.AP reaches 95.80%,and Frames Per Second(FPS)gets 88.12 on the test set of the proposed dataset,which can achieve real-time performance in practical applications.展开更多
Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).Howe...Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance.展开更多
Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,du...Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images.展开更多
A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. Thes...A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed.展开更多
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag...Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.展开更多
An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two ...An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two positions of the target in the difference image are near and the gray values of them are close to in absolute value but with inverse sign. Firstly, pairs of points with RPFN are detected in the difference image between neighbor frame images, with which a virtual vector graph is made, and then the moving point target can be detected by the vectors' sequence cumulated in vector graphs. In addition, a theorem for the convergence of detection of target contrail by this algorithm is given and proved so as to afford a solid guarantee for practical applications of the algorithm proposed in this paper. Finally, some simulation results with 1000 frames from 10 typical images in complex background show that moving point targets with SNR not lower than 1.5 can be detected effectively.展开更多
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in stu...Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in studying the thermal denatured temperature range of proteins in salmon and chicken meat. The results show that the temperature ranges of denatured proteins were from 65 ℃ to 75 ℃ , and these temperature ranges were influenced by the processing methods. Through SDS-PAGE, the features of repeated heating thermal denatured proteins under the same temperature and processing time were studied. The electrophoresis patterns of thermal denatured proteins determined through repeated heating at the same temperature did not exhibit any change. For the detection of cooked fish and meat samples, they were subjected to applying the SDS-PAGE method, which revealed an EPT ranging from 60 ℃ to 80 ℃ .展开更多
For exploring the aftershock occurrence process of the 2008 Wenchuan strong earthquake, the spatio-temporal point pattern analysis method is employed to study the sequences of aflershocks with magnitude M≥4.0, M≥4.5...For exploring the aftershock occurrence process of the 2008 Wenchuan strong earthquake, the spatio-temporal point pattern analysis method is employed to study the sequences of aflershocks with magnitude M≥4.0, M≥4.5, and M≥5.0. It is found that these data exhibit the spatio-temporal clustering on a certain distance scale and on a certain time scale. In particular, the space-time interaction obviously strengthens when the distance is less than 60 km and the time is less than 260 h for the first two aftershock sequences; however, it becomes strong when the distance scale is less than 80 km and the time scale is less than 150 h for the last aftershock sequence. The completely spatial randomness analysis on the data regardless of time component shows that the spatial clustering of the aftershocks gradually strengthens on the condition that the distance is less than 60 km. The results are valuable for exploring the occurrence rules of the Wenchuan strong earthquake and for predicting the aftershocks.展开更多
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou...LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision.展开更多
A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and...A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and a biotin-labeled reverse primer, and followed by digestion with MvaI restriction enzyme, which only cut the wild-type amplicon containing its cutting site. The digested product was then adsorbed to the streptavidin-coated microbead through the biotin label and detected by ECL assay. The experiment results showed that the different genotypes can be clearly discriminated by ECL-PCR method. It is useful in point mutation detection, due to its sensitivity, safety, and simplicity.展开更多
The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detectio...The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers.展开更多
A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contaminat...A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.展开更多
Background Compared with traditional biomagnetic field detection devices,such as superconducting quantum interference devices(SQUIDs)and atomic magnetometers,only giant magneto impedance(GMI)sensors can be applied for...Background Compared with traditional biomagnetic field detection devices,such as superconducting quantum interference devices(SQUIDs)and atomic magnetometers,only giant magneto impedance(GMI)sensors can be applied for unshielded human brain biomagnetic detection,and they have the potential for application in next-generation wearable equipment for brain-computer interfaces(BCIs).Achieving a better GMI sensor without magnetic shielding requires the stimulation of the GMI effect to be maximized and environmental noise interference to be minimized.Moreover,the GMI effect stimulated in an amorphous filament is closely related to its working point,which is sensitive to both the external magnetic field and the drive current of the filament.Methods In this paper,we propose a new noise reducing GMI gradiometer with a dual-loop self-adapting structure.Noise reduction is realized by a direction-flexible differential probe,and the dual-loop structure optimizes and stabilizes the working point by automatically controlling the external magnetic field and drive current.This dual-loop structure is fully program controlled by a micro control unit(MCU),which not only simplifies the traditional constant parameter sensor circuit,saving the time required to adjust the circuit component parameters,but also improves the sensor performance and environmental adaptation.Results In the performance test,within 2 min of self-adaptation,our sensor showed a better sensitivity and signal-to-noise ratio(SNR)than those of the traditional designs and achieved a background noise of 12 pT/√Hz at 10 Hz and 7pT/√Hz at 200 Hz.Conclusion To the best of our knowledge,our sensor is the first to realize self-adaptation of both the external magnetic field and the drive current.展开更多
In Canada,Gonorrhea infection ranks as the second most prevalent sexually transmitted infection.In 2018,Manitoba reported an incidence rate three times greater than the national average.This study aims to investigate ...In Canada,Gonorrhea infection ranks as the second most prevalent sexually transmitted infection.In 2018,Manitoba reported an incidence rate three times greater than the national average.This study aims to investigate the spatial,temporal,and spatio-temporal patterns of Gonorrhea infection in Manitoba,using individual-level laboratory-confirmed administrative data provided by Manitoba Health from 2000 to 2016.Age and sex patterns indicate that females are affected by infections at younger ages compared to males.Moreover,there is an increase in repeated infections in 2016,accounting for 16%of the total infections.Spatial analysis at the 96 Manitoba regional health authority districts highlights significant positive spatial autocorrelation,demonstrating a clustered distribution of the infection.Northern districts of Manitoba and central Winnipeg were identified as significant clusters.Temporal analysis shows seasonal patterns,with higher infections in late summer and fall.Additionally,spatio-temporal analysis reveals clusters during high-risk periods,with the most likely cluster in the northern districts of Manitoba from January 2006 to June 2014,and a secondary cluster in central Winnipeg from June 2004 to November 2012.This study identifies that Gonorrhea infection transmission in Manitoba has temporal,spatial,and spatio-temporal variations.The findings provide vital insights for public health and Manitoba Health by revealing high-risk clusters and emphasizing the need for focused and localized prevention,control measures,and resource allocation.展开更多
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc...Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
基金support by the Federal Ministry for Economic Affairs and Climate Action of Germany(BMWK)within the Innovation Platform“KEEN-Artificial Intelligence Incubator Laboratory in the Process Industry”(Grant No.01MK20014T)The research of L.B.is supported by the Swedish Research Council Grant VR 2018-03661。
文摘Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time series of process variables may have an important indication about the process operation.For example,in a batch process,the change points can correspond to the operations and phases defined by the batch recipe.Hence identifying change points can assist labelling the time series data.Various unsupervised algorithms have been developed for change point detection,including the optimisation approachwhich minimises a cost functionwith certain penalties to search for the change points.The Bayesian approach is another,which uses Bayesian statistics to calculate the posterior probability of a specific sample being a change point.The paper investigates how the two approaches for change point detection can be applied to process data analytics.In addition,a new type of cost function using Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by randomness in the data.The novelty lies in using regularisation-based cost functions to handle ill-posed problems of noisy data.The results demonstrate that change point detection is useful for process data analytics because change points can produce data segments corresponding to different operating modes or varying conditions,which will be useful for other machine learning tasks.
文摘Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods.
文摘A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.
基金funded by the Youth Project of National Natural Science Foundation of China(52002031)the General Project of Shaanxi Province Science and Technology Development Planned Project(2023-JC-YB-600)+1 种基金Postgraduate Education and Teaching Research University-Level Project of Central University Project(300103131033)the Transportation Research Project of Shaanxi Transport Department(23-108 K).
文摘Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image processing methods have poor adaptability to pollution and complex backgrounds.Although deep learning-based methods can automatically extract features,the bounding boxes cannot entirely fit the contour of the code.Further image processing methods are required for precise positioning,which will reduce efficiency.Because of the above problems,a CenterNet-based DM code key point detection network is proposed,which can directly obtain the four key points of the DM code.Compared with the existing methods,the degree of fitness is higher,which is conducive to direct decoding.To further improve the positioning accuracy,an enhanced loss function is designed,including DM code key point heatmap loss,standard DM code projection loss,and polygon Intersection-over-Union(IoU)loss,which is beneficial for the network to learn the spatial geometric characteristics of DM code.The experiment is carried out on the self-made DM code key point detection dataset,including pollution,complex background,small objects,etc.,which uses the Average Precision(AP)of the common object detection metric as the evaluation metric.AP reaches 95.80%,and Frames Per Second(FPS)gets 88.12 on the test set of the proposed dataset,which can achieve real-time performance in practical applications.
文摘Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance.
基金Aeronautical Science Foundation of China(No.2018ZC51022)。
文摘Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images.
基金The Special Funds for Fundamental Research Project of China under contract No.2008T04the Marine Scientific Research Special Funds for Public Welfare of China under contract No.200905029
文摘A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed.
文摘Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.
文摘An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two positions of the target in the difference image are near and the gray values of them are close to in absolute value but with inverse sign. Firstly, pairs of points with RPFN are detected in the difference image between neighbor frame images, with which a virtual vector graph is made, and then the moving point target can be detected by the vectors' sequence cumulated in vector graphs. In addition, a theorem for the convergence of detection of target contrail by this algorithm is given and proved so as to afford a solid guarantee for practical applications of the algorithm proposed in this paper. Finally, some simulation results with 1000 frames from 10 typical images in complex background show that moving point targets with SNR not lower than 1.5 can be detected effectively.
基金supported by a research project (No. 2006IK012) of the General Administration of Quality Supervision, Inspection and Quarantine of P. R. China.
文摘Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in studying the thermal denatured temperature range of proteins in salmon and chicken meat. The results show that the temperature ranges of denatured proteins were from 65 ℃ to 75 ℃ , and these temperature ranges were influenced by the processing methods. Through SDS-PAGE, the features of repeated heating thermal denatured proteins under the same temperature and processing time were studied. The electrophoresis patterns of thermal denatured proteins determined through repeated heating at the same temperature did not exhibit any change. For the detection of cooked fish and meat samples, they were subjected to applying the SDS-PAGE method, which revealed an EPT ranging from 60 ℃ to 80 ℃ .
基金supported by the Key Project of Chinese National Programs for Fun-damental Research and Development (973 program) (2008CB425704)
文摘For exploring the aftershock occurrence process of the 2008 Wenchuan strong earthquake, the spatio-temporal point pattern analysis method is employed to study the sequences of aflershocks with magnitude M≥4.0, M≥4.5, and M≥5.0. It is found that these data exhibit the spatio-temporal clustering on a certain distance scale and on a certain time scale. In particular, the space-time interaction obviously strengthens when the distance is less than 60 km and the time is less than 260 h for the first two aftershock sequences; however, it becomes strong when the distance scale is less than 80 km and the time scale is less than 150 h for the last aftershock sequence. The completely spatial randomness analysis on the data regardless of time component shows that the spatial clustering of the aftershocks gradually strengthens on the condition that the distance is less than 60 km. The results are valuable for exploring the occurrence rules of the Wenchuan strong earthquake and for predicting the aftershocks.
基金This work was supported,in part,by the National Nature Science Foundation of China under grant numbers 62272236in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision.
文摘A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and a biotin-labeled reverse primer, and followed by digestion with MvaI restriction enzyme, which only cut the wild-type amplicon containing its cutting site. The digested product was then adsorbed to the streptavidin-coated microbead through the biotin label and detected by ECL assay. The experiment results showed that the different genotypes can be clearly discriminated by ECL-PCR method. It is useful in point mutation detection, due to its sensitivity, safety, and simplicity.
基金Project(2011AA040603) supported by the National High Technology Ressarch & Development Program of ChinaProject(201202226) supported by the Natural Science Foundation of Liaoning Province, China
文摘The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(2011BAK15B06)supported by the National Science and Technology Support Program,China+1 种基金Project(2013M541003)supported by the China Postdoctoral Science FoundationProject(2012YQ090208)supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development
文摘A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.
基金Supported by the China Postdoctoral Science Foundation(4139ZRL)the National Natural Science Foundation of China(U19A2083).
文摘Background Compared with traditional biomagnetic field detection devices,such as superconducting quantum interference devices(SQUIDs)and atomic magnetometers,only giant magneto impedance(GMI)sensors can be applied for unshielded human brain biomagnetic detection,and they have the potential for application in next-generation wearable equipment for brain-computer interfaces(BCIs).Achieving a better GMI sensor without magnetic shielding requires the stimulation of the GMI effect to be maximized and environmental noise interference to be minimized.Moreover,the GMI effect stimulated in an amorphous filament is closely related to its working point,which is sensitive to both the external magnetic field and the drive current of the filament.Methods In this paper,we propose a new noise reducing GMI gradiometer with a dual-loop self-adapting structure.Noise reduction is realized by a direction-flexible differential probe,and the dual-loop structure optimizes and stabilizes the working point by automatically controlling the external magnetic field and drive current.This dual-loop structure is fully program controlled by a micro control unit(MCU),which not only simplifies the traditional constant parameter sensor circuit,saving the time required to adjust the circuit component parameters,but also improves the sensor performance and environmental adaptation.Results In the performance test,within 2 min of self-adaptation,our sensor showed a better sensitivity and signal-to-noise ratio(SNR)than those of the traditional designs and achieved a background noise of 12 pT/√Hz at 10 Hz and 7pT/√Hz at 200 Hz.Conclusion To the best of our knowledge,our sensor is the first to realize self-adaptation of both the external magnetic field and the drive current.
文摘In Canada,Gonorrhea infection ranks as the second most prevalent sexually transmitted infection.In 2018,Manitoba reported an incidence rate three times greater than the national average.This study aims to investigate the spatial,temporal,and spatio-temporal patterns of Gonorrhea infection in Manitoba,using individual-level laboratory-confirmed administrative data provided by Manitoba Health from 2000 to 2016.Age and sex patterns indicate that females are affected by infections at younger ages compared to males.Moreover,there is an increase in repeated infections in 2016,accounting for 16%of the total infections.Spatial analysis at the 96 Manitoba regional health authority districts highlights significant positive spatial autocorrelation,demonstrating a clustered distribution of the infection.Northern districts of Manitoba and central Winnipeg were identified as significant clusters.Temporal analysis shows seasonal patterns,with higher infections in late summer and fall.Additionally,spatio-temporal analysis reveals clusters during high-risk periods,with the most likely cluster in the northern districts of Manitoba from January 2006 to June 2014,and a secondary cluster in central Winnipeg from June 2004 to November 2012.This study identifies that Gonorrhea infection transmission in Manitoba has temporal,spatial,and spatio-temporal variations.The findings provide vital insights for public health and Manitoba Health by revealing high-risk clusters and emphasizing the need for focused and localized prevention,control measures,and resource allocation.
基金supported by the National Natural Science Foundation of China (No.52075349)the National Natural Science Foundation of China (No.62303335)+1 种基金the Postdoctoral Researcher Program of China (No.GZC20231779)the Natural Science Foundation of Sichuan Province (No.2022NSFSC1942).
文摘Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.