期刊文献+
共找到3,710篇文章
< 1 2 186 >
每页显示 20 50 100
Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility 被引量:1
1
作者 Rebecca Gedda Larisa Beilina Ruomu Tan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1737-1759,共23页
Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time s... Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time series of process variables may have an important indication about the process operation.For example,in a batch process,the change points can correspond to the operations and phases defined by the batch recipe.Hence identifying change points can assist labelling the time series data.Various unsupervised algorithms have been developed for change point detection,including the optimisation approachwhich minimises a cost functionwith certain penalties to search for the change points.The Bayesian approach is another,which uses Bayesian statistics to calculate the posterior probability of a specific sample being a change point.The paper investigates how the two approaches for change point detection can be applied to process data analytics.In addition,a new type of cost function using Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by randomness in the data.The novelty lies in using regularisation-based cost functions to handle ill-posed problems of noisy data.The results demonstrate that change point detection is useful for process data analytics because change points can produce data segments corresponding to different operating modes or varying conditions,which will be useful for other machine learning tasks. 展开更多
关键词 Change point detection unsupervisedmachine learning optimisation Bayesian statistics Tikhonov regularisation
下载PDF
Spatio-Temporal Change of Dispersal Areas of Greater Kudu (Tragelaphus strepsiceros) in Lake Bogoria Landscape, Kenya
2
作者 Beatrice Chepkoech Cheserek George Morara Ogendi Paul Mutua Makenzi 《Open Journal of Ecology》 2024年第3期183-198,共16页
Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last... Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods. 展开更多
关键词 spatio-temporal Change Dispersal Greater Kudu (Tragelaphus Strepsiceros) point Pattern Analysis (PPA) GIS
下载PDF
Analysis of Bridge-Bearing Capacity Detection and Evaluation Technology
3
作者 Wei Fu Bo Liu 《Journal of World Architecture》 2024年第2期129-133,共5页
A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection techn... A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure. 展开更多
关键词 Bridge engineering structure Bearing capacity Calculation model detection points Quantitative standards
下载PDF
DM Code Key Point Detection Algorithm Based on CenterNet
4
作者 Wei Wang Xinyao Tang +2 位作者 Kai Zhou Chunhui Zhao Changfa Liu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1911-1928,共18页
Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image pro... Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image processing methods have poor adaptability to pollution and complex backgrounds.Although deep learning-based methods can automatically extract features,the bounding boxes cannot entirely fit the contour of the code.Further image processing methods are required for precise positioning,which will reduce efficiency.Because of the above problems,a CenterNet-based DM code key point detection network is proposed,which can directly obtain the four key points of the DM code.Compared with the existing methods,the degree of fitness is higher,which is conducive to direct decoding.To further improve the positioning accuracy,an enhanced loss function is designed,including DM code key point heatmap loss,standard DM code projection loss,and polygon Intersection-over-Union(IoU)loss,which is beneficial for the network to learn the spatial geometric characteristics of DM code.The experiment is carried out on the self-made DM code key point detection dataset,including pollution,complex background,small objects,etc.,which uses the Average Precision(AP)of the common object detection metric as the evaluation metric.AP reaches 95.80%,and Frames Per Second(FPS)gets 88.12 on the test set of the proposed dataset,which can achieve real-time performance in practical applications. 展开更多
关键词 DM code key point detection CenterNet object detection enhanced loss function
下载PDF
Point Cloud Processing Methods for 3D Point Cloud Detection Tasks
5
作者 WANG Chongchong LI Yao +2 位作者 WANG Beibei CAO Hong ZHANG Yanyong 《ZTE Communications》 2023年第4期38-46,共9页
Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).Howe... Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance. 展开更多
关键词 point cloud processing 3D object detection point cloud voxelization bird's eye view deep learning
下载PDF
A Hybrid Features Based Detection Method for Inshore Ship Targets in SAR Imagery 被引量:2
6
作者 Tong ZHENG Peng LEI Jun WANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期95-107,共13页
Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,du... Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images. 展开更多
关键词 Convolutional Neural Network(CNN) Synthetic Aperture Radar(SAR) inshore ship detection hybrid features high-energy point number amplitude spectrum
下载PDF
Point association analysis of vessel target detection with SAR, HFSWR and AIS 被引量:8
7
作者 JI Yonggang ZHANG Jie +1 位作者 MENG Junmin WANG Yiming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第9期73-81,共9页
A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. Thes... A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed. 展开更多
关键词 vessel target detection SAR HFSWR AIS point association data fusion
下载PDF
Automatic Feature Point Detection and Tracking of Human Actions in Time-of-flight Videos 被引量:8
8
作者 Xiaohui Yuan Longbo Kong +1 位作者 Dengchao Feng Zhenchun Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期677-685,共9页
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag... Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms. 展开更多
关键词 Feature point human pose detection joint detection time-of-flight(ToF) videos
下载PDF
A Moving IR Point Target Detection Algorithm Based on Reverse Phase Feature of Neighborhood in Difference Between Neighbor Frame Images 被引量:3
9
作者 朱风云 秦世引 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期225-232,共8页
An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two ... An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two positions of the target in the difference image are near and the gray values of them are close to in absolute value but with inverse sign. Firstly, pairs of points with RPFN are detected in the difference image between neighbor frame images, with which a virtual vector graph is made, and then the moving point target can be detected by the vectors' sequence cumulated in vector graphs. In addition, a theorem for the convergence of detection of target contrail by this algorithm is given and proved so as to afford a solid guarantee for practical applications of the algorithm proposed in this paper. Finally, some simulation results with 1000 frames from 10 typical images in complex background show that moving point targets with SNR not lower than 1.5 can be detected effectively. 展开更多
关键词 pattern recognition target detection point target difference image RPFN
下载PDF
基于知识蒸馏和定位引导的Pointpillars点云检测网络 被引量:1
10
作者 赵晶 李少博 +3 位作者 郭杰龙 俞辉 张剑锋 李杰 《液晶与显示》 CSCD 北大核心 2024年第1期79-88,共10页
激光雷达数据由于其几何特性,被广泛应用于三维目标检测任务中。由于点云数据的稀疏性和不规则性,难以实现特征提取的质量和推理速度间的平衡。本文提出一种基于体柱特征编码的三维目标检测算法,以Pointpillars网络为基础,设计Teacher-S... 激光雷达数据由于其几何特性,被广泛应用于三维目标检测任务中。由于点云数据的稀疏性和不规则性,难以实现特征提取的质量和推理速度间的平衡。本文提出一种基于体柱特征编码的三维目标检测算法,以Pointpillars网络为基础,设计Teacher-Student模型框架对回归框尺度进行蒸馏,增加蒸馏损失,优化训练网络模型,提升特征提取的质量。为进一步提高模型检测效果,设计定位引导分类项,增加分类预测和回归预测之间的相关性,提高物体识别准确率。本网络所做改进没有引入额外的网络嵌入。算法在KITTI数据集上的实验结果表明,相比于基准网络,在三维模式下的平均精度值从60.65%提升到了64.69%,鸟瞰图模式下的平均精度值从67.74%提升到70.24%。模型推理速度为45 FPS,在提升检测精度的同时满足了实时性要求。 展开更多
关键词 激光点云 三维目标检测 知识蒸馏 分类置信度
下载PDF
Detection of the End Point Temperature of Thermal Denatured Protein in Fish and Chicken Meat Through SDS-PAGE Electrophoresis 被引量:4
11
作者 GAO Hongwei MAO Mao +2 位作者 LIANG Chengzhu LIN Chao XIANG Jianhai 《Journal of Ocean University of China》 SCIE CAS 2009年第1期95-99,共5页
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in stu... Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in studying the thermal denatured temperature range of proteins in salmon and chicken meat. The results show that the temperature ranges of denatured proteins were from 65 ℃ to 75 ℃ , and these temperature ranges were influenced by the processing methods. Through SDS-PAGE, the features of repeated heating thermal denatured proteins under the same temperature and processing time were studied. The electrophoresis patterns of thermal denatured proteins determined through repeated heating at the same temperature did not exhibit any change. For the detection of cooked fish and meat samples, they were subjected to applying the SDS-PAGE method, which revealed an EPT ranging from 60 ℃ to 80 ℃ . 展开更多
关键词 end point temperature detection SDS-PAGE electrophoresis
下载PDF
Spatio-temporal point pattern analysis on Wenchuan strong earthquake 被引量:3
12
作者 Peijian Shi Jie Liu Zhen Yang 《Earthquake Science》 CSCD 2009年第3期231-237,共7页
For exploring the aftershock occurrence process of the 2008 Wenchuan strong earthquake, the spatio-temporal point pattern analysis method is employed to study the sequences of aflershocks with magnitude M≥4.0, M≥4.5... For exploring the aftershock occurrence process of the 2008 Wenchuan strong earthquake, the spatio-temporal point pattern analysis method is employed to study the sequences of aflershocks with magnitude M≥4.0, M≥4.5, and M≥5.0. It is found that these data exhibit the spatio-temporal clustering on a certain distance scale and on a certain time scale. In particular, the space-time interaction obviously strengthens when the distance is less than 60 km and the time is less than 260 h for the first two aftershock sequences; however, it becomes strong when the distance scale is less than 80 km and the time scale is less than 150 h for the last aftershock sequence. The completely spatial randomness analysis on the data regardless of time component shows that the spatial clustering of the aftershocks gradually strengthens on the condition that the distance is less than 60 km. The results are valuable for exploring the occurrence rules of the Wenchuan strong earthquake and for predicting the aftershocks. 展开更多
关键词 Wenchuan earthquake completely spatial randomness spatio-temporal point pattern K-FUNCTION
下载PDF
3D Object Detection with Attention:Shell-Based Modeling
13
作者 Xiaorui Zhang Ziquan Zhao +1 位作者 Wei Sun Qi Cui 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期537-550,共14页
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou... LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision. 展开更多
关键词 3D object detection autonomous driving point cloud shell-based modeling self-attention mechanism
下载PDF
Highly sensitive ECL-PCR method for detection of K-ras point mutation 被引量:1
14
作者 De Bin Zhu Da Xing Ya Bing Tang 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第2期198-200,共3页
A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and... A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and a biotin-labeled reverse primer, and followed by digestion with MvaI restriction enzyme, which only cut the wild-type amplicon containing its cutting site. The digested product was then adsorbed to the streptavidin-coated microbead through the biotin label and detected by ECL assay. The experiment results showed that the different genotypes can be clearly discriminated by ECL-PCR method. It is useful in point mutation detection, due to its sensitivity, safety, and simplicity. 展开更多
关键词 Electrochemiluminescence-polymerase chain reaction K-ras oncogene point mutation detection
下载PDF
On-line outlier and change point detection for time series 被引量:1
15
作者 苏卫星 朱云龙 +1 位作者 刘芳 胡琨元 《Journal of Central South University》 SCIE EI CAS 2013年第1期114-122,共9页
The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detectio... The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers. 展开更多
关键词 outlier detection change point detection time series hypothesis test
下载PDF
Performance assisted enhancement based on change point detection and Kalman filtering 被引量:1
16
作者 任孝平 王健 +1 位作者 薛志超 谷明琴 《Journal of Central South University》 SCIE EI CAS 2013年第12期3528-3535,共8页
A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contaminat... A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data. 展开更多
关键词 change point detection Kalman filtering nonholonomic constraint GPS/INS integrated navigation system
下载PDF
Giant magneto-impedance sensor with working point selfadaptation for unshielded human bio-magnetic detection 被引量:1
17
作者 Changlin HAN Ming XU +2 位作者 Jingsheng TANG Yadong LIU Zongtan ZHOU 《Virtual Reality & Intelligent Hardware》 EI 2022年第1期38-54,共17页
Background Compared with traditional biomagnetic field detection devices,such as superconducting quantum interference devices(SQUIDs)and atomic magnetometers,only giant magneto impedance(GMI)sensors can be applied for... Background Compared with traditional biomagnetic field detection devices,such as superconducting quantum interference devices(SQUIDs)and atomic magnetometers,only giant magneto impedance(GMI)sensors can be applied for unshielded human brain biomagnetic detection,and they have the potential for application in next-generation wearable equipment for brain-computer interfaces(BCIs).Achieving a better GMI sensor without magnetic shielding requires the stimulation of the GMI effect to be maximized and environmental noise interference to be minimized.Moreover,the GMI effect stimulated in an amorphous filament is closely related to its working point,which is sensitive to both the external magnetic field and the drive current of the filament.Methods In this paper,we propose a new noise reducing GMI gradiometer with a dual-loop self-adapting structure.Noise reduction is realized by a direction-flexible differential probe,and the dual-loop structure optimizes and stabilizes the working point by automatically controlling the external magnetic field and drive current.This dual-loop structure is fully program controlled by a micro control unit(MCU),which not only simplifies the traditional constant parameter sensor circuit,saving the time required to adjust the circuit component parameters,but also improves the sensor performance and environmental adaptation.Results In the performance test,within 2 min of self-adaptation,our sensor showed a better sensitivity and signal-to-noise ratio(SNR)than those of the traditional designs and achieved a background noise of 12 pT/√Hz at 10 Hz and 7pT/√Hz at 200 Hz.Conclusion To the best of our knowledge,our sensor is the first to realize self-adaptation of both the external magnetic field and the drive current. 展开更多
关键词 Brain-computer interface Biomagnetic detection GMI effect Working point self-adaptation Dual-loop control Magnetic gradiometer Differential noise reduction
下载PDF
Gonorrhea cluster detection in Manitoba,Canada:Spatial,temporal,and spatio-temporal analysis
18
作者 Amin Abed Mahmoud Torabi Zeinab Mashreghi 《Infectious Disease Modelling》 CSCD 2024年第4期1045-1056,共12页
In Canada,Gonorrhea infection ranks as the second most prevalent sexually transmitted infection.In 2018,Manitoba reported an incidence rate three times greater than the national average.This study aims to investigate ... In Canada,Gonorrhea infection ranks as the second most prevalent sexually transmitted infection.In 2018,Manitoba reported an incidence rate three times greater than the national average.This study aims to investigate the spatial,temporal,and spatio-temporal patterns of Gonorrhea infection in Manitoba,using individual-level laboratory-confirmed administrative data provided by Manitoba Health from 2000 to 2016.Age and sex patterns indicate that females are affected by infections at younger ages compared to males.Moreover,there is an increase in repeated infections in 2016,accounting for 16%of the total infections.Spatial analysis at the 96 Manitoba regional health authority districts highlights significant positive spatial autocorrelation,demonstrating a clustered distribution of the infection.Northern districts of Manitoba and central Winnipeg were identified as significant clusters.Temporal analysis shows seasonal patterns,with higher infections in late summer and fall.Additionally,spatio-temporal analysis reveals clusters during high-risk periods,with the most likely cluster in the northern districts of Manitoba from January 2006 to June 2014,and a secondary cluster in central Winnipeg from June 2004 to November 2012.This study identifies that Gonorrhea infection transmission in Manitoba has temporal,spatial,and spatio-temporal variations.The findings provide vital insights for public health and Manitoba Health by revealing high-risk clusters and emphasizing the need for focused and localized prevention,control measures,and resource allocation. 展开更多
关键词 Cluster detection GONORRHEA Infectious disease Spatial analysis spatio-temporal analysis
原文传递
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
19
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection spatio-temporal informa-tion Multivariate time series signals Attention graph convolution Stacked autoencoder
原文传递
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
20
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部