期刊文献+
共找到1,506篇文章
< 1 2 76 >
每页显示 20 50 100
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
1
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 spatio-temporal prediction infectious diseases graph neural networks
下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
2
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
下载PDF
Optimization of LSTM Ship Trajectory Prediction Based on Hybrid Genetic Algorithm
3
作者 ZHAO Pengfei 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期89-102,共14页
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit... Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction. 展开更多
关键词 trajectory prediction LSTM hybrid genetic algorithm
下载PDF
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
4
作者 Jia-Jun Zhong Yong Ma +3 位作者 Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期53-69,共17页
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial... Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics. 展开更多
关键词 Graph neural network Multi-head attention mechanism spatio-temporal dependency Traffic flow prediction
下载PDF
Air combat target maneuver trajectory prediction based on robust regularized Volterra series and adaptive ensemble online transfer learning 被引量:1
5
作者 Xi Zhi-fei Kou Ying-xin +4 位作者 Li Zhan-wu Lv Yue Xu An Li You Li Shuang-qing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期187-206,共20页
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta... Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets. 展开更多
关键词 Maneuver trajectory prediction Volterra series Transfer learning Online learning Ensemble learning Robust regularization
下载PDF
Lithium-ion battery degradation trajectory early prediction with synthetic dataset and deep learning
6
作者 Mingqiang Lin Yuqiang You +3 位作者 Jinhao Meng Wei Wang Ji Wu Daniel-Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期534-546,I0013,共14页
Knowing the long-term degradation trajectory of Lithium-ion(Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system(BESS) in reality. Previous battery health diagn... Knowing the long-term degradation trajectory of Lithium-ion(Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system(BESS) in reality. Previous battery health diagnosis methods focus on capacity and state of health(SOH) estimation which can receive only the short-term health status of the cell. This paper proposes a novel degradation trajectory prediction method with synthetic dataset and deep learning, which enables to grasp the characterization of the cell's health at a very early stage of Li-ion battery usage. A transferred convolutional neural network(CNN) is chosen to finalize the early prediction target, and the polynomial function based synthetic dataset generation strategy is designed to reduce the costly data collection procedure in real application. In this thread, the proposed method needs one full lifespan data to predict the overall degradation trajectories of other cells. With only the full lifespan cycling data from 4 cells and 100 cycling data from each cell in experimental validation, the proposed method shows a good prediction accuracy on a dataset with more than 100 commercial Li-ion batteries. 展开更多
关键词 Lithium-ion battery Degradation trajectory Long-term prediction Transferred convolutional neural network
下载PDF
A Meta-Learning Approach for Aircraft Trajectory Prediction
7
作者 Syed Ibtehaj Raza Rizvi Jamal Habibi Markani René Jr. Landry 《Communications and Network》 2023年第2期43-64,共22页
The aviation industry has seen significant advancements in safety procedures over the past few decades, resulting in a steady decline in aviation deaths worldwide. However, the safety standards in General Aviation (GA... The aviation industry has seen significant advancements in safety procedures over the past few decades, resulting in a steady decline in aviation deaths worldwide. However, the safety standards in General Aviation (GA) are still lower compared to those in commercial aviation. With the anticipated growth in air travel, there is an imminent need to improve operational safety in GA. One way to improve aircraft and operational safety is through trajectory prediction. Trajectory prediction plays a key role in optimizing air traffic control and improving overall flight safety. This paper proposes a meta-learning approach to predict short- to mid-term trajectories of aircraft using historical real flight data collected from multiple GA aircraft. The proposed solution brings together multiple models to improve prediction accuracy. In this paper, we are combining two models, Random Forest Regression (RFR) and Long Short-term Memory (LSTM), using k-Nearest Neighbors (k-NN), to output the final prediction based on the combined output of the individual models. This approach gives our model an edge over single-model predictions. We present the results of our meta-learner and evaluate its performance against individual models using the Mean Absolute Error (MAE), Absolute Altitude Error (AAE), and Root Mean Squared Error (RMSE) evaluation metrics. The proposed methodology for aircraft trajectory forecasting is discussed in detail, accompanied by a literature review and an overview of the data preprocessing techniques used. The results demonstrate that the proposed meta-learner outperforms individual models in terms of accuracy, providing a more robust and proactive approach to improve operational safety in GA. 展开更多
关键词 trajectory prediction General Aviation Safety META-LEARNING Random Forest Regression Long Short-Term Memory Short to Mid-Term trajectory prediction Operational Safety
下载PDF
A Flight Trajectory Prediction Method Based on Internal Relationships between Attributes
8
作者 Liwei Wu Yuqi Fan 《计算机科学与技术汇刊(中英文版)》 2023年第1期1-10,共10页
The rapid development of the aviation industry urgently requires airspace traffic management,and flight trajectory prediction is a core component of airspace traffic management.Flight trajectory is a multidimensional ... The rapid development of the aviation industry urgently requires airspace traffic management,and flight trajectory prediction is a core component of airspace traffic management.Flight trajectory is a multidimensional time series with rich spatio-temporal characteristics,and existing flight trajectory prediction methods only target the trajectory point temporal relationships,but not the implicit interrelationships among the trajectory point attributes.In this paper,a graph convolutional network(AR-GCN)based on the intra-attribute relationships is proposed for solving the flight track prediction problem.First,the network extracts the temporal features of each attribute and fuses them with the original features of the attribute to obtain the enhanced attribute features,then extracts the implicit relationships between attributes as inter-attribute relationship features.Secondly,the enhanced attribute features are used as nodes and the inter-attribute relationship features are used as edges to construct the inter-attribute relationship graph.Finally,the graph convolutional network is used to aggregate the attribute features.Based on the full fusion of the above features,we achieved high accuracy prediction of the trajectory.In this paper,experiments are conducted on ADS-B historical track data.We compare our method with the classical method and the proposed method.Experimental results show that our method achieves significant improvement in prediction accuracy. 展开更多
关键词 Deep Learning Graph Convolution Neural Network Flight trajectory prediction
下载PDF
Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms 被引量:8
9
作者 Wei Fang Yupeng Chen Qiongying Xue 《Journal on Big Data》 2021年第3期97-110,共14页
In the past few years,deep learning has developed rapidly,and many researchers try to combine their subjects with deep learning.The algorithm based on Recurrent Neural Network(RNN)has been successfully applied in the ... In the past few years,deep learning has developed rapidly,and many researchers try to combine their subjects with deep learning.The algorithm based on Recurrent Neural Network(RNN)has been successfully applied in the fields of weather forecasting,stock forecasting,action recognition,etc.because of its excellent performance in processing Spatio-temporal sequence data.Among them,algorithms based on LSTM and GRU have developed most rapidly because of their good design.This paper reviews the RNN-based Spatio-temporal sequence prediction algorithm,introduces the development history of RNN and the common application directions of the Spatio-temporal sequence prediction,and includes precipitation nowcasting algorithms and traffic flow forecasting algorithms.At the same time,it also compares the advantages and disadvantages,and innovations of each algorithm.The purpose of this article is to give readers a clear understanding of solutions to such problems.Finally,it prospects the future development of RNN in the Spatio-temporal sequence prediction algorithm. 展开更多
关键词 RNN LSTM GRU spatio-temporal sequence prediction
下载PDF
Grain Yield Prediction of Henan Province Based on Spatio-temporal Regression Model
10
作者 LIU Qin-pu School of Bio-chemical and Environment Engineering,Nanjing Xiaozhuang University,Nanjing 211171,China 《Asian Agricultural Research》 2011年第8期58-60,89,共4页
By using correlation analysis method,regression analysis method and time sequence method,we combine time and space,to establish grain yield spatio-temporal regression prediction model of Henan Province and all prefect... By using correlation analysis method,regression analysis method and time sequence method,we combine time and space,to establish grain yield spatio-temporal regression prediction model of Henan Province and all prefecture-level cities.At first,we use the grain yield in prefecture-level cities of Henan in the year 2000 and 2005,to establish regression model,and then taking the grain yield in one year as independent variable,we predict the grain yield in the fifth year afterwards.Taking the dependent variable value as independent variable again,we predict the grain yield at an interval of the same years,and based on this,predict year by year forward until the year we need.The research shows that the grain yield of Henan Province in the year 2015 and 2020 is 59.849 6 and 67.929 3 million t respectively,consistent with the research results of other scholars to some extent. 展开更多
关键词 spatio-temporal regression MODEL MOVING prediction
下载PDF
Impact Point Prediction and Lateral Correction Analysis of Two-dimensional Trajectory Correction Projectiles 被引量:7
11
作者 WANG Zhongyuan CHANG Sijiang 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第1期64-69,共6页
Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ... Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research. 展开更多
关键词 control and navigation technology of aerocraft trajectory correction damping disk trajectory ballistic drift impact point prediction
下载PDF
A Trajectory Prediction Based Intelligent Handover Control Method in UAV Cellular Networks 被引量:3
12
作者 Bo Hu Hanzhang Yang +1 位作者 Lei Wang Shanzhi Chen 《China Communications》 SCIE CSCD 2019年第1期1-14,共14页
The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single ... The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single mobile user is used to trigger the handover mechanism.This handover mechanism lacks the consideration of movement state of mobile users and the location relationship between mobile users,which may lead to handover misjudgments and even communication interrupts.In this paper,we propose an intelligent handover control method in UAV cellular networks.Firstly,we introduce a deep learning model to predict the user trajectories.This prediction model learns the movement behavior of mobile users from the measurement information and analyzes the positional relations between mobile users such as avoiding collision and accommodating fellow pedestrians.Secondly,we propose a handover decision method,which can calculate the users' corresponding receiving power based on the predicted location and the characteristic of air-to-ground channel,to make handover decisions accurately.Finally,we use realistic data sets with thousands of non-linear trajectories to verify the basic functions and performance of our proposed intelligent handover controlmethod.The simulation results show that the handover success rate of the proposed method is 8% higher than existing methods. 展开更多
关键词 UAV AIRBORNE base STATION HANDOVER control trajectory prediction DEEP learning
下载PDF
Vehicle Motion Prediction at Intersections Based on the Turning Intention and Prior Trajectories Model 被引量:8
13
作者 Ting Zhang Wenjie Song +2 位作者 Mengyin Fu Yi Yang Meiling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1657-1666,共10页
Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Cons... Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications. 展开更多
关键词 Autonomous vehicle intersection motion prediction prior trajectories model turning intention
下载PDF
NSHV trajectory prediction algorithm based on aerodynamic acceleration EMD decomposition 被引量:8
14
作者 LI Fan XIONG Jiajun +2 位作者 LAN Xuhui BI Hongkui CHEN Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期103-117,共15页
Aiming at the problem of gliding near space hypersonic vehicle(NSHV)trajectory prediction,a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition(EMD)is proposed.The method analyz... Aiming at the problem of gliding near space hypersonic vehicle(NSHV)trajectory prediction,a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition(EMD)is proposed.The method analyzes the motion characteristics of the skipping gliding NSHV and verifies that the aerodynamic acceleration of the target has a relatively stable rule.On this basis,EMD is used to extract the trend of aerodynamic acceleration into multiple sub-items,and aggregate sub-items with similar attributes.Then,a prior basis function is set according to the aerodynamic acceleration stability rule,and the aggregated data are fitted by the basis function to predict its future state.After that,the prediction data of the aerodynamic acceleration are used to drive the system to predict the target trajectory.Finally,experiments verify the effectiveness of the method.In addition,the distribution of prediction errors in space is discussed,and the reasons are analyzed. 展开更多
关键词 hypersonic vehicle trajectory prediction empirical mode decomposition(EMD) aerodynamic acceleration
下载PDF
A Spatial-Temporal Attention Model for Human Trajectory Prediction 被引量:5
15
作者 Xiaodong Zhao Yaran Chen +1 位作者 Jin Guo Dongbin Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期965-974,共10页
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround... Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets. 展开更多
关键词 Attention mechanism long-short term memory(LSTM) spatial-temporal model trajectory prediction
下载PDF
Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm 被引量:11
16
作者 XI Zhifei XU An +2 位作者 KOU Yingxin LI Zhanwu YANG Aiwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期498-516,共19页
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta... Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model. 展开更多
关键词 trajectory prediction K-MEANS improved particle swarm optimization(IPSO) Levenberg-Marquardt(LM) radial basis function(RBF)neural network
下载PDF
A Probabilistic Architecture of Long-Term Vehicle Trajectory Prediction for Autonomous Driving 被引量:4
17
作者 Jinxin Liu Yugong Luo +3 位作者 Zhihua Zhong Keqiang Li Heye Huang Hui Xiong 《Engineering》 SCIE EI CAS 2022年第12期228-239,共12页
In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisio... In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisions and guarantee driving safety.In this paper,we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction,which consists of a driving inference model(DIM)and a trajectory prediction model(TPM).The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network.The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information.To further improve the prediction accuracy and realize uncertainty estimation,we develop a Gaussian process-based TPM,considering both the short-term prediction results of the vehicle model and the driving motion characteristics.Afterward,the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios.The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods. 展开更多
关键词 Autonomous driving Dynamic Bayesian network Driving intention recognition Gaussian process Vehicle trajectory prediction
下载PDF
A Recurrent Attention and Interaction Model for Pedestrian Trajectory Prediction 被引量:6
18
作者 Xuesong Li Yating Liu +1 位作者 Kunfeng Wang Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1361-1370,共10页
The movement of pedestrians involves temporal continuity,spatial interactivity,and random diversity.As a result,pedestrian trajectory prediction is rather challenging.Most existing trajectory prediction methods tend t... The movement of pedestrians involves temporal continuity,spatial interactivity,and random diversity.As a result,pedestrian trajectory prediction is rather challenging.Most existing trajectory prediction methods tend to focus on just one aspect of these challenges,ignoring the temporal information of the trajectory and making too many assumptions.In this paper,we propose a recurrent attention and interaction(RAI)model to predict pedestrian trajectories.The RAI model consists of a temporal attention module,spatial pooling module,and randomness modeling module.The temporal attention module is proposed to assign different weights to the input sequence of a target,and reduce the speed deviation of different pedestrians.The spatial pooling module is proposed to model not only the social information of neighbors in historical frames,but also the intention of neighbors in the current time.The randomness modeling module is proposed to model the uncertainty and diversity of trajectories by introducing random noise.We conduct extensive experiments on several public datasets.The results demonstrate that our method outperforms many that are state-ofthe-art. 展开更多
关键词 Deep learning long short-term memory(LSTM) recurrent attention and interaction(RAI)model trajectory prediction
下载PDF
Interaction-Aware Cut-In Trajectory Prediction and Risk Assessment in Mixed Traffic 被引量:2
19
作者 Xianglei Zhu Wen Hu +5 位作者 Zejian Deng Jinwei Zhang Fengqing Hu Rui Zhou Keqiu Li Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1752-1762,共11页
Accurately predicting the trajectories of surrounding vehicles and assessing the collision risks are essential to avoid side and rear-end collisions caused by cut-in.To improve the safety of autonomous vehicles in the... Accurately predicting the trajectories of surrounding vehicles and assessing the collision risks are essential to avoid side and rear-end collisions caused by cut-in.To improve the safety of autonomous vehicles in the mixed traffic,this study proposes a cut-in prediction and risk assessment method with considering the interactions of multiple traffic participants.The integration of the support vector machine and Gaussian mixture model(SVM-GMM)is developed to simultaneously predict cut-in behavior and trajectory.The dimension of the input features is reduced through Chebyshev fitting to improve the training efficiency as well as the online inference performance.Based on the predicted trajectory of the cut-in vehicle and the responsive actions of the autonomous vehicles,two risk measurements are introduced to formulate the comprehensive interaction risk through the combination of Sigmoid function and Softmax function.Finally,the comparative analysis is performed to validate the proposed method using the naturalistic driving data.The results show that the proposed method can predict the trajectory with higher precision and effectively evaluate the risk level of a cut-in maneuver compared to the methods without considering interaction. 展开更多
关键词 Cut-in behavior interaction-aware mixed traffic risk assessment trajectory prediction
下载PDF
Aircraft Trajectory Prediction Based on Modified Interacting Multiple Model Algorithm 被引量:8
20
作者 张军峰 武晓光 王菲 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期180-184,共5页
In order to realize the aircraft trajectory prediction,a modified interacting multiple model(M-IMM) algorithm is proposed,which is based on the performance analysis of the standard interacting multiple model(IMM) algo... In order to realize the aircraft trajectory prediction,a modified interacting multiple model(M-IMM) algorithm is proposed,which is based on the performance analysis of the standard interacting multiple model(IMM) algorithm.In the proposed M-IMM algorithm,a new likelihood function is defined for the sake of updating flight mode probabilities,in which the influences of interacting to residual's mean error are taken into account and the assumption of likelihood function being a zero mean Gaussian function is discarded.Finally,the proposed M-IMM algorithm is applied to the simulation of the aircraft trajectory prediction,and the comparative studies are conducted to existing algorithms.The simulation results indicate the proposed M-IMM algorithm can predict aircraft trajectory more quickly and accurately. 展开更多
关键词 trajectory likelihood aircraft quickly interacting updating assumption prediction false Bayesian
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部