机器人是新质生产力的革命性引擎,正在重塑人类的生活和工作。同步定位与建图技术(Simultaneous Localization And Mapping,SLAM)能够使机器人在未知环境中自主导航并构建周围环境的地图,是自主移动机器人实现智能化的基石。然而,SLAM...机器人是新质生产力的革命性引擎,正在重塑人类的生活和工作。同步定位与建图技术(Simultaneous Localization And Mapping,SLAM)能够使机器人在未知环境中自主导航并构建周围环境的地图,是自主移动机器人实现智能化的基石。然而,SLAM算法复杂且运算量大,基于通用芯片方案实现存在延时长、功耗高的问题,不能满足自主移动机器人,尤其是小型、微型、纳型机器人的实时性、体积和功耗需求。因此,设计专用芯片加速计算密集的SLAM算法在近年来受到学术界和产业界的高度关注。本文首先从SLAM技术的基本概念和应用场景出发介绍了SLAM算法需要硬件加速的必要性,接着从算法和专用芯片设计两个角度出发梳理了SLAM技术的研究现状与发展趋势,接着重点讨论了SLAM专用芯片研究的技术挑战与解决方案,对未来发展给出了建议。展开更多
文摘机器人是新质生产力的革命性引擎,正在重塑人类的生活和工作。同步定位与建图技术(Simultaneous Localization And Mapping,SLAM)能够使机器人在未知环境中自主导航并构建周围环境的地图,是自主移动机器人实现智能化的基石。然而,SLAM算法复杂且运算量大,基于通用芯片方案实现存在延时长、功耗高的问题,不能满足自主移动机器人,尤其是小型、微型、纳型机器人的实时性、体积和功耗需求。因此,设计专用芯片加速计算密集的SLAM算法在近年来受到学术界和产业界的高度关注。本文首先从SLAM技术的基本概念和应用场景出发介绍了SLAM算法需要硬件加速的必要性,接着从算法和专用芯片设计两个角度出发梳理了SLAM技术的研究现状与发展趋势,接着重点讨论了SLAM专用芯片研究的技术挑战与解决方案,对未来发展给出了建议。