3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi...In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.展开更多
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the...This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy...The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy absorption and its distribution in homogeneousand layered homogenous lossy dielectric spheres are presented,and a comparison of these resultswith analytical solution is given.The calculation is carried out for dielectric cylinder on conduct-ing ground as well,and the results are compared with the image theory.All the computationsshew that the finite-difference time-domain method can give satisfactory results.展开更多
The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation,open or closed circuit,thermal and mechanical boundary conditions.The outer and inner surfaces o...The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation,open or closed circuit,thermal and mechanical boundary conditions.The outer and inner surfaces of the cylinder are subjected to both mechanical and thermal boundary conditions.A The transient coupled thermoelasticity in an infinite cylinder with its base abruptly exposed to a heat flux of a decaying exponential function of time is devised solve by the finite-difference method.The fundamental equations’system is solved by utilizing an implicit finite-difference method.This current method is a second-order accurate in time and space;it is also unconditionally stable.To illustrate the present model’s efficiency,we consider a suitable material and acquire the numerical solution of temperature,displacement components,and the components of stresses with time t and through the radial of an infinite cylinder.The results indicate that the effect of coupled thermoelasticity,magnetic field,and rotation on the temperature,stresses,and displacement is quite pronounced.In order to illustrate and verify the analytical developments,the numerical solution of partial differential equations,stress components,displacement components and temperature is carried out and computer simulated results are presented graphically.This study is helpful in the development of piezoelectric devices.展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra...An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.展开更多
An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness wav...An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness waveguide. ILC-FDTD not only removes tile instability of the original locally conformal FDTD algorithm, but also improves the computational accuracy by locally modifying magnetic field update equations and the virtual iterative electric fields accordlng to the complexity of tile slot fringe fields. The mutual coupling between two edge inclined slots can also be analyzed by ILC-FDTD effectively.展开更多
The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the M...The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.展开更多
The analytic expression of the special points on the intersection of two cones with their axes intersecting(ITCTAI) is given. It also presents a method to construct the special points graphically according to the anal...The analytic expression of the special points on the intersection of two cones with their axes intersecting(ITCTAI) is given. It also presents a method to construct the special points graphically according to the analytic expression of them. Finally, with computer programming language, it gives a program to generate the intersection in several different cases.展开更多
After discovery of the superluminal particle and consideration on development of contemporary physical theory research, also on the existing errors and omissions, the principle of constant light speed is found not a n...After discovery of the superluminal particle and consideration on development of contemporary physical theory research, also on the existing errors and omissions, the principle of constant light speed is found not a necessary condition in derivation of Lorentz Transformation;instead, this thesis proposes the velocity of graviton may feature superluminal, constant velocity in different directions, and independence of inertial reference frame speeds. This is an optional thought of correction. According serial hypothesis, an equation of graviton’s motion trace, i.e., the central curve of nebula density, is established for spiral galaxy. Thus we gain the method to measure velocity of graviton. If to totally avoid problem of limit speed, we have to search for independent of inertia frames, and relevant to space-time properties. Regarding current difficulties of singular points in the Theory of Limited Universe, this thesis points out that the document [1] is the best solution to these difficulties.展开更多
The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in th...The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in this paper will be solved by Finite-Difference Mode, that' s simple and has an extensive use. The way it works is that by dividing the component into many units. Finite-difference methods (FDM) are numerical methods for anoroximating, the solutions to differential eauations usine finite difference equations to approximate derivatives.展开更多
The research proposition of this article is to do a brief analysis of the specialized theories and the systems of the methods of the college counselors' work under the perspective of the professional theories of the ...The research proposition of this article is to do a brief analysis of the specialized theories and the systems of the methods of the college counselors' work under the perspective of the professional theories of the college counselors, and discuss the way of the realization of the specialization of the college counseling work, to achieve the professional orientation of the work of the college counselors. With the use of the specialized ways of work, we can make the college counselors develop themselves in the strict professional training and the continuous autonomous learning. They should use their own professional knowledge to equip themselves, to be the teachers and management personnel able to correctly guide the healthy growth of the university students.展开更多
The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in...The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in conjunction with summation-by-parts(SBP)difference boundary closure of(Gerritsen and Olsson in J Comput Phys 129:245-262,1996;Olsson and Oliger in RIACS Tech Rep 94.01,1994;Yee et al.in J Comp Phys 162:33-81,2000).Sj?green and Yee(J Sci Comput)recently proved that the entropy split method is entropy conservative and stable.Stand-ard high-order spatial central differencing as well as high order central spatial dispersion relation preserving(DRP)spatial differencing is part of the entropy stable split methodol-ogy framework.The current work is our first attempt to derive a high order conservative numerical flux for the non-conservative portion of the entropy splitting of the Euler flux derivatives.Due to the construction,this conservative numerical flux requires higher oper-ations count and is less stable than the original semi-conservative split method.However,the Tadmor entropy conservative(EC)method(Tadmor in Acta Numerica 12:451-512,2003)of the same order requires more operations count than the new construction.Since the entropy split method is a semi-conservative skew-symmetric splitting of the Euler flux derivative,a modified nonlinear filter approach of(Yee et al.in J Comput Phys 150:199-238,1999,J Comp Phys 162:3381,2000;Yee and Sj?green in J Comput Phys 225:910934,2007,High Order Filter Methods for Wide Range of Compressible flow Speeds.Proceedings of the ICOSAHOM09,June 22-26,Trondheim,Norway,2009)is proposed in conjunction with the entropy split method as the base method for problems containing shock waves.Long-time integration of 2D and 3D test cases is included to show the com-parison of these new approaches.展开更多
Afour-month period of national special rectification for product quality and food safety officially started on August 25, and was focused on eight fields, including those of agricultural products and processed foo... Afour-month period of national special rectification for product quality and food safety officially started on August 25, and was focused on eight fields, including those of agricultural products and processed foods.……展开更多
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
基金the National Natural Science Foundation of China(No.40774056)Program of Excellent Team in Harbin Institute of Technology
文摘In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.
基金Project supported by Tianjin Research Program Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
文摘The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy absorption and its distribution in homogeneousand layered homogenous lossy dielectric spheres are presented,and a comparison of these resultswith analytical solution is given.The calculation is carried out for dielectric cylinder on conduct-ing ground as well,and the results are compared with the image theory.All the computationsshew that the finite-difference time-domain method can give satisfactory results.
基金Taif University Researchers Supporting Project Number(TURSP-2020/164),Taif University,Taif,Saudi Arabia.
文摘The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation,open or closed circuit,thermal and mechanical boundary conditions.The outer and inner surfaces of the cylinder are subjected to both mechanical and thermal boundary conditions.A The transient coupled thermoelasticity in an infinite cylinder with its base abruptly exposed to a heat flux of a decaying exponential function of time is devised solve by the finite-difference method.The fundamental equations’system is solved by utilizing an implicit finite-difference method.This current method is a second-order accurate in time and space;it is also unconditionally stable.To illustrate the present model’s efficiency,we consider a suitable material and acquire the numerical solution of temperature,displacement components,and the components of stresses with time t and through the radial of an infinite cylinder.The results indicate that the effect of coupled thermoelasticity,magnetic field,and rotation on the temperature,stresses,and displacement is quite pronounced.In order to illustrate and verify the analytical developments,the numerical solution of partial differential equations,stress components,displacement components and temperature is carried out and computer simulated results are presented graphically.This study is helpful in the development of piezoelectric devices.
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331007 and 61471105)
文摘An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
基金Supported by the National Natural Science Fbundation of China(No.69931030)
文摘An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness waveguide. ILC-FDTD not only removes tile instability of the original locally conformal FDTD algorithm, but also improves the computational accuracy by locally modifying magnetic field update equations and the virtual iterative electric fields accordlng to the complexity of tile slot fringe fields. The mutual coupling between two edge inclined slots can also be analyzed by ILC-FDTD effectively.
基金supported by the Natural Science Foundation of China(No.41374078)Geological Survey Projects of Ministry of Land and Resources of China(No.12120113086100 and 12120113101300)
文摘The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.
文摘The analytic expression of the special points on the intersection of two cones with their axes intersecting(ITCTAI) is given. It also presents a method to construct the special points graphically according to the analytic expression of them. Finally, with computer programming language, it gives a program to generate the intersection in several different cases.
文摘After discovery of the superluminal particle and consideration on development of contemporary physical theory research, also on the existing errors and omissions, the principle of constant light speed is found not a necessary condition in derivation of Lorentz Transformation;instead, this thesis proposes the velocity of graviton may feature superluminal, constant velocity in different directions, and independence of inertial reference frame speeds. This is an optional thought of correction. According serial hypothesis, an equation of graviton’s motion trace, i.e., the central curve of nebula density, is established for spiral galaxy. Thus we gain the method to measure velocity of graviton. If to totally avoid problem of limit speed, we have to search for independent of inertia frames, and relevant to space-time properties. Regarding current difficulties of singular points in the Theory of Limited Universe, this thesis points out that the document [1] is the best solution to these difficulties.
文摘The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in this paper will be solved by Finite-Difference Mode, that' s simple and has an extensive use. The way it works is that by dividing the component into many units. Finite-difference methods (FDM) are numerical methods for anoroximating, the solutions to differential eauations usine finite difference equations to approximate derivatives.
文摘The research proposition of this article is to do a brief analysis of the specialized theories and the systems of the methods of the college counselors' work under the perspective of the professional theories of the college counselors, and discuss the way of the realization of the specialization of the college counseling work, to achieve the professional orientation of the work of the college counselors. With the use of the specialized ways of work, we can make the college counselors develop themselves in the strict professional training and the continuous autonomous learning. They should use their own professional knowledge to equip themselves, to be the teachers and management personnel able to correctly guide the healthy growth of the university students.
基金support from the NASA TTT/RCA program for the second author is grate-fully acknowledged.
文摘The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in conjunction with summation-by-parts(SBP)difference boundary closure of(Gerritsen and Olsson in J Comput Phys 129:245-262,1996;Olsson and Oliger in RIACS Tech Rep 94.01,1994;Yee et al.in J Comp Phys 162:33-81,2000).Sj?green and Yee(J Sci Comput)recently proved that the entropy split method is entropy conservative and stable.Stand-ard high-order spatial central differencing as well as high order central spatial dispersion relation preserving(DRP)spatial differencing is part of the entropy stable split methodol-ogy framework.The current work is our first attempt to derive a high order conservative numerical flux for the non-conservative portion of the entropy splitting of the Euler flux derivatives.Due to the construction,this conservative numerical flux requires higher oper-ations count and is less stable than the original semi-conservative split method.However,the Tadmor entropy conservative(EC)method(Tadmor in Acta Numerica 12:451-512,2003)of the same order requires more operations count than the new construction.Since the entropy split method is a semi-conservative skew-symmetric splitting of the Euler flux derivative,a modified nonlinear filter approach of(Yee et al.in J Comput Phys 150:199-238,1999,J Comp Phys 162:3381,2000;Yee and Sj?green in J Comput Phys 225:910934,2007,High Order Filter Methods for Wide Range of Compressible flow Speeds.Proceedings of the ICOSAHOM09,June 22-26,Trondheim,Norway,2009)is proposed in conjunction with the entropy split method as the base method for problems containing shock waves.Long-time integration of 2D and 3D test cases is included to show the com-parison of these new approaches.
文摘 Afour-month period of national special rectification for product quality and food safety officially started on August 25, and was focused on eight fields, including those of agricultural products and processed foods.……