期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Optimization of suspension system of heavy off-road vehicle for stability enhancement using integrated anti-roll bar and coiling spring mechanism 被引量:3
1
作者 Ilgar JAVANSHIR Andino MASELENO +1 位作者 Shahin TASOUJIAN Majid OVEISI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2289-2298,共10页
Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability... Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability and controllability.Motion control,stability maintenance and ride comfort improvement are fundamental issues in design of suspension system of off-road vehicles.In this work,a dependent suspension system mostly used in off-road vehicles is modeled using Trucksim software.Then,geometric parameters of suspension system are optimized using integrated anti-roll bar and coiling spring in a way that ride comfort,handling and stability of vehicle are improved.The simulation results of suspension system and variations of geometric parameters due to road roughness and different steering angles are presented in Trucksim and effects of optimization of suspension system during various driving maneuvers in both optimized and un-optimized conditions are compared.The simulation results indicate that the type of suspension system and geometric parameters have significant effect on vehicle performance. 展开更多
关键词 off-road vehicles HANDLING anti-roll bar coil spring vehicle lateral dynamic Trucksim software
下载PDF
General Torsional Stiffness Matching of Off-road Vehicle 被引量:2
2
作者 HUANG Song 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期331-335,共5页
Increasing frame torsional stiffness of off-road vehicle will lead to the decrease of body torsional deformation, but the increase of torsional loads of frame and suspension system and the decrease of wheel adhesive w... Increasing frame torsional stiffness of off-road vehicle will lead to the decrease of body torsional deformation, but the increase of torsional loads of frame and suspension system and the decrease of wheel adhesive weight. In severe case, a certain wheel will be out of contact with road surface. Appropriate matching of body, frame and suspension torsional stiffnesses is a difficult problem for off-road vehicle design. In this paper, these theoretically analytic models of the entire vehicle, body, frame and suspension torsional stiffness are constructed based on the geometry and mechanism of a light off-road vehicle's body, frame and suspension. The body and frame torsional stiffnesses can be calculated by applying body CAE method, meanwhile the suspension's rolling angle stiffness can be obtained by the bench test of the suspension's elastic elements. Through fixing the entire vehicle, using sole timber to raise wheels to simulate the road impact on a certain wheel, the entire vehicle torsional stiffness can be calculated on the geometric relation and loads of testing. Finally some appropriate matching principles of the body, frame and suspension torsional stiffness are summarized according to the test and analysis results. The conclusion can reveal the significance of the suspension torsional stiffness on off-road vehicle's torsion-absorbing capability. The results could serve as a reference for the design of other off-road vehicles. 展开更多
关键词 off-road vehicle bodywork FRAME suspension system torsional stiffness MATCHING
下载PDF
Effect of the off-road terrains on the ride comfort of construction vehicles 被引量:1
3
作者 Nguyen Van Liem Zhang Jianrun +1 位作者 Jiao Renqiang Du Xiaofei 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期191-197,共7页
In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based o... In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based on Matlab/Simulink software.The weighted root mean square(RMS)acceleration responses and the power spectral density(PSD)acceleration responses of the driver s seat heave,the pitch and roll angle of the cab in the low-frequency region are chosen as objective functions under different operation conditions of the vehicle.The results show that the impact of off-road terrains on the driver s ride comfort and health is clear under various conditions of deformable terrains and range of vehicle velocities.In particular,the driver s ride comfort is greatly affected by a soil terrain while the comfortable shake of the driver is strongly affected by a sand terrain.In addition,when the vehicle travels on a poor soil terrain in the frequency range below 4 Hz,more resonance peaks of acceleration PSD responses occurred than that on a rigid road of ISO 2631-1 level C.Thus,the driver s health is significantly affected by the deformable terrain in a low-frequency range. 展开更多
关键词 construction vehicles vehicle dynamic model off-road terrains ride comfort
下载PDF
Vehicle and terrain interaction based on Adams-Matlab co-simulation 被引量:5
4
作者 张晓阳 孙蓓蓓 +1 位作者 孙庆鸿 陈南 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期335-339,共5页
A kind of construction truck model is built in Adams based on multi-body dynamic theory. The rigid and elastic wheels of tire-soil contact models are proposed based on the Bekker pressure model and the Jonasi shear so... A kind of construction truck model is built in Adams based on multi-body dynamic theory. The rigid and elastic wheels of tire-soil contact models are proposed based on the Bekker pressure model and the Jonasi shear soil model, and they are described in the form of S-function to enhance the calculation efficiency and simulation accuracy. Finally, the interaction of truck and soil is simulated by Adams-Maflab co-simulation to study the influence of soft terrain on the ride comfort of vehicles. The co-simulation results reveal that the terrain properties have a great influence on the ride comfort of vehicles as well as driving speed, road roughness and cargo weight. This co-simulation model is convenient for adding the factor of terrain deformation to the analysis of vehicle ride comfort. It can also be used to optimize suspension system parameters especially for off-road vehicles. 展开更多
关键词 off-road vehicle vehicle terramechanics ride comfort CO-SIMULATION
下载PDF
A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments 被引量:10
5
作者 Jin-wen HU Boyin ZHENG +4 位作者 Ce WANG Chun-hui ZHAO Xiao-lei HOU Quan PAN Zhao XU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第5期675-692,共18页
With the development of sensor fusion technologies, there has been a lot of research on intelligent ground vehicles, where obstacle detection is one of the key aspects of vehicle driving. Obstacle detection is a compl... With the development of sensor fusion technologies, there has been a lot of research on intelligent ground vehicles, where obstacle detection is one of the key aspects of vehicle driving. Obstacle detection is a complicated task, which involves the diversity of obstacles, sensor characteristics, and environmental conditions. While the on-road driver assistance system or autonomous driving system has been well researched, the methods developed for the structured road of city scenes may fail in an off-road environment because of its uncertainty and diversity.A single type of sensor finds it hard to satisfy the needs of obstacle detection because of the sensing limitations in range, signal features, and working conditions of detection, and this motivates researchers and engineers to develop multi-sensor fusion and system integration methodology. This survey aims at summarizing the main considerations for the onboard multi-sensor configuration of intelligent ground vehicles in the off-road environments and providing users with a guideline for selecting sensors based on their performance requirements and application environments.State-of-the-art multi-sensor fusion methods and system prototypes are reviewed and associated to the corresponding heterogeneous sensor configurations. Finally, emerging technologies and challenges are discussed for future study. 展开更多
关键词 Multi-sensor fusion Obstacle detection off-road environment Intelligent vehicle Unmanned ground vehicle
原文传递
Off-road testing scenario design and library generation for intelligent vehicles 被引量:1
6
作者 Yuchun Wang Jianwei Gong +2 位作者 Boyang Wang Peng Jia Tansyou Kyo 《Green Energy and Intelligent Transportation》 2022年第3期1-12,共12页
To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundament... To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundamental.Since traditional distance-based road tests cannot meet the evolving test requirements,a method to design the function-based off-road testing scenario library for intelligent vehicles(IV)is proposed in this paper.The testing scenario library is defined as a critical set of scenarios that can be used for IV tests.First,for the complex and diverse off-road scenarios,a hierarchical,structural model of the test scenario is built.Then,the critical test scenarios are selected adaptively according to the vehicle model to be tested.Next,those parameters representing the challenging test scenarios are selected.The selected parameters need to fit the natural distribution probability of scenarios.The critical test-scenario library is built combing these parameters with the structural model.Finally,the test scenarios that are most approximate to the natural driving scenario are determined with importance sampling theory.The test-scenario library built with this method can provide more critical test scenarios,and is widely applicable despite different vehicle models.Verified by simulation in the off-road interaction scenarios,test would be accelerated significantly with this method,about 800 times faster than testing in the natural road environment. 展开更多
关键词 off-road testing scenario design Intelligent vehicles off-road scenario model
原文传递
Experimental Study on the Ride Comfort of a Crawler Power Chassis Scale Model Based on the Similitude Theory 被引量:2
7
作者 ZHAO Jianzhu WANG Fengchen +2 位作者 YU Bin TONG Pengcheng CHEN Kuifu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期496-503,共8页
The ride comfort experimental assessment of crawler off-road vehicle is relatively overlooked, and is expensive and difficult to execute with higher and higher ride comfort performance requirements. To trade off betwe... The ride comfort experimental assessment of crawler off-road vehicle is relatively overlooked, and is expensive and difficult to execute with higher and higher ride comfort performance requirements. To trade off between precise and cost, an experimental method based on the similitude theory is proposed. Under the guidance of the similitude theory, a 1:5 crawler power chassis scale model equipped with a kind of variable stiffness suspension system is used. The power spectrum density(PSD), the root mean square(RMS) of weighed acceleration, peak factor, average absorbed power(AAP) and vibration dose value(VDV) are selected as ride comfort evaluation indexes, and tests results are transformed via similarity indexes to predict the performance of full-scale power chassis. PSD shows that the low-order natural frequency of the vertical natural frequency(z axis) is 1.1 Hz, and the RMS, AAP and VDV values indicate the ride comfort performance of this kind of power chassis is between the "A little uncomfortable" and "Rather uncomfortable". From the results, low-order vertical natural frequency, obtained by PSD, validates that the similarity relationship between two models is satisfied, and 1:5 scale model used in experiment meets the similarity relationship with the full-scale model; consequently, the ride comfort prophase evaluation with the 1:5 scale model is feasible. The attempt of applying the similitude theory to crawler vehicle ride comfort test study decreases the cost and improves the test feasibility with sufficient test precise. 展开更多
关键词 crawler power chassis scale model similitude theory off-road vehicle ride comfort
下载PDF
Development of a Twin-Accumulator Hydro-Pneumatic Suspension 被引量:1
8
作者 杨波 陈思忠 +2 位作者 吴志成 杨林 张斌 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第2期183-187,共5页
A twin-accumulator hydro-pneumatic suspension has been developed based on the off-road vehicle in order to meet the requirements of ride comfort. The working principle and elements construct of the developed suspensio... A twin-accumulator hydro-pneumatic suspension has been developed based on the off-road vehicle in order to meet the requirements of ride comfort. The working principle and elements construct of the developed suspension are studied. And then,a mathematical model of the developed suspension is built. The influence of twin-accumulator hydro-pneumatic suspension parameters on the vehicle body vertical acceleration,suspension travel and dynamic tyre load is studied by simulation based on a quarter off-road vehicle model. The ride comfort of the vehicle with the developed suspension is studied by a theoretical evaluation; also the ride comfort of the vehicle with twin-accumulator hydro-pneumatic suspension is compared with the one with single accumulator hydro-pneumatic suspension in both time domain and frequency domain. The result shows that the twin-accumulator hydro-pneumatic suspension system gives worthwhile improvements in ride comfort compared with the single accumulator hydro-pneumatic suspension,and it is more suitable for off-road vehicle. 展开更多
关键词 off-road vehicle twin-accumulator hydro-pneumatic suspension ride comfort
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部