A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting proc...A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting process were first plated with a coarse copper coating layer by electroless plating process.A low-temperature sintering process was then completed at about 800 °C for 1 h under the protection of hydrogen atmosphere.The results show that a novel SMFM with complex surface morphology and high specific surface area(0.2 m2/g) can be obtained in this way.The effect of sintering temperature on the surface morphology and specific surface area of SMFM was studied by means of scanning electron microscopy and Brunauer-Emmett-Teller.The damage of micro-structure during the sintering process mainly contributed to the loss of specific surface area of SMFM and the optimal sintering temperature was 800 °C.展开更多
As a substitute for synthetic ammonia under mild condition, electrocatalytic nitrogen reduction reaction(NRR) provides a hopeful approach for the development of ammonia. Nevertheless, the current development of NRR el...As a substitute for synthetic ammonia under mild condition, electrocatalytic nitrogen reduction reaction(NRR) provides a hopeful approach for the development of ammonia. Nevertheless, the current development of NRR electrocatalysts is far from enough and a systematic research is needed to gain a better improvement. This article presents that 2 D C_(3)N_(4)-NV with a large specific surface area and abundant nitrogen vacancies is prepared by a simple and feasible method, and used as a metal-free catalyst for electrocatalytic NRR. Experiment result and density functional theory(DFT) calculation reveal that nitrogen vacancies in 2 D C_(3)N_(4)-NV can act as an efficient active site for catalytic NRR, which is conducive to capturing and activating N_(2), lowering Gibbs free energy(DG) in reaction and inhibiting hydrogen evolution reaction(HER) at the same time. In addition, the larger specific surface area also makes more active site exposed, which is good for the contact between the electrolyte and the active site, thus enhancing its NRR activity. The electrocatalyst shows an excellent catalytic activity for NRR in 0.1 M HCl, including Faradaic efficiency of 10.96%, NH_(3) yields of 17.85 lg h^(-1) mg_(cat)^(-1)., and good stability(over 20 h).展开更多
In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. T...In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.展开更多
Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produc...Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produced by heating acid treated rice husk at 700℃ for 4 h. The isotherms of rice husk ash are similar in shape to type Ⅱof Brunaner's classification with mesopores being predominant. The rice husk ash has a high chemical reactivity,especially that pretreated with acid. This chemical reactivity depends on ashing temperature and pretreatment conditions. There is an exponential relation between the specific surface area of rice husk ash and the change in the conductivity of saturated Ca(OH)2 solution with rice husk ash, from which the specific surface area can be known according to the conductivity change.展开更多
The relationship between the specific surface area(SSA) of rust and the electrochemical behavior of rusted steel under wet-dry acid corrosion conditions was investigated. The results showed that the corrosion curren...The relationship between the specific surface area(SSA) of rust and the electrochemical behavior of rusted steel under wet-dry acid corrosion conditions was investigated. The results showed that the corrosion current density first increased and then decreased with increasing SSA of the rust during the corrosion process. The structure of the rust changed from single-layer to double-layer, and the γ-FeOOH content decreased in the inner layer of the rust with increasing corrosion time; by contrast, the γ-FeOOH content in the outer layer was constant. When the SSA of the rust was lower than the critical SSA corresponding to the relative humidity during the drying period, condensed water in the micropores of the rust could evaporate, which prompted the diffusion of O_2 into the rust and the following formation process of γ-FeOOH, leading to an increase of corrosion current density with increasing corrosion time. However, when the SSA of the rust reached or exceeded the critical SSA, condensate water in the micro-pores of the inner layer of the rust could not evaporate which inhibited the diffusion of O_2 and decreased the γ-FeOOH content in the inner rust, leading to a decrease of corrosion current density with increasing corrosion time.展开更多
Effects of specific surface area and tiny amount of impurities of reactive alumina on the workability, sinte- ring and high temperature mechanical strength of corun- dum based castables were investigated. The results ...Effects of specific surface area and tiny amount of impurities of reactive alumina on the workability, sinte- ring and high temperature mechanical strength of corun- dum based castables were investigated. The results show that the presence of reactive alumina with high specific surface area leads to accelerating of the hydration of calcium aluminate cement, thus shortening the working time and setting time of the castables, which can be as- cribed that the critical energy barrier for stable nuclei of hydration products of cement can be reduced by the high specific surface area of reactive alumina. The sintering of the corundum based castables can be accelerated by the reactive alumina with high specific surface area and high amount of impurities, however, the reactive alumina with too high specific surface area and impurities can al- so lead to noticeable shrinkage of castables. In addition, high temperature mechanical strength of corundum based castables can be decreased by the higher amount of trace impurities of reactive alumina due to formation of low- melting phase at high temperatures.展开更多
Principle and method of measuring Specific Surface Area (SSA) of ceramisite made from dredged river sediment, sewage sludge and adherent materials are discussed. Brunauer-Emmett-Teller Procedure tests SSA of the ceram...Principle and method of measuring Specific Surface Area (SSA) of ceramisite made from dredged river sediment, sewage sludge and adherent materials are discussed. Brunauer-Emmett-Teller Procedure tests SSA of the ceramisite. Influences of sewage sludge content, adherent content and sintering point on the SSA of ceramisite made of river sediment are also analyzed. Results show that with the right sewage sludge content, adherent content and sintering point, the ceramisite can have the highest SSA value and be widely used.展开更多
More than 500 datasets from the literature have been used to evaluate the relationships of specific surface area (SSA),cation exchange capacity (CEC) and activity versus the liquid limit (LL).The correlations gave R^2...More than 500 datasets from the literature have been used to evaluate the relationships of specific surface area (SSA),cation exchange capacity (CEC) and activity versus the liquid limit (LL).The correlations gave R^2 values ranging between 0.71 and 0.92.Independent data were also used to validate the correlations.Estimated SSA values slightly overestimate the measured SSA up to 100 m^2/g.Regarding the estimated CEC values,they overestimated the measured CEC values up to 20 meq/(100 g).A probabilistic approach was performed for the correlations of SSA,CEC and activity versus LL.The analysis shows that the relations of SSA,CEC and activity with LL are robust.Using the LL values,it is possible to assess other basic engineering properties of clays.展开更多
An activated carbon with ash content less than 10% and specific surface area more than 1 600 m 2 /g was prepared from coal and the effect of K containing compounds in preparation of coal based activated carbon was inv...An activated carbon with ash content less than 10% and specific surface area more than 1 600 m 2 /g was prepared from coal and the effect of K containing compounds in preparation of coal based activated carbon was investigated in detail in this paper. KOH was used in co carbonization with coal, changes in graphitic crystallites in chars derived from carbonization of coal with and without KOH were analyzed by X ray diffraction (XRD) technique, activation rates of chars with different contents of K containing compounds were deduced, and resulting activated carbons were characterized by nitrogen adsorption isotherms at 77 K and iodine numbers. The results showed that the addition of KOH to the coal before carbonization can realize the intensive removal of inorganic matters from chars under mild conditions, especially the efficient removal of dispersive quartz, an extremely difficult separated mineral component in other processes else. Apart from this, KOH demonstrates a favorable effect in control over coal carbonization with the goal to form nongraphitizable isotropic carbon precursor, which is a necessary prerequisite for the formation and development of micro pores. However, the K containing compounds such as K 2 CO 3 and K 2 O remaining in chars after carbonization catalyze the reaction between carbon and steam in activation, which leads to the formation of macro pores. In the end an innovative method, in which KOH is added to coal before carbonization and K containing compounds are removed by acid washing after carbonization, was proposed for the synthesis of quality coal based activated carbon.展开更多
Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and or...Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and ordered carbon structures at high deposition temperatures. The values of I(D)/I(G) of the deposited carbon reached 1.86, 1.30, and 1.22 in the first, second, and third stages, respectively. The structure of carbon in the second stage was similar to that in the third stage. Carbon deposited in the first stage rarely contained homogeneous pyrolytic deposit layers. A kinetic model was developed to analyze the carbon deposition behavior in the first stage. The rate-determining step of the first stage is supposed to be interfacial reaction. Based on the investigation of carbon deposition kinetics on nickel powders from different resources, carbon deposition rate is suggested to have a linear relation with the square of specific surface area of nickel particles.展开更多
Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a disti...Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a distinct seasonal variation of the alkalinity, which is concerned with the process of vertical mixing. Different specific alkalinity in various water masses has been found. On the basis of the difference of the specific alkalinity and the distribution of alkalinity, two water fronts in summer season, located at 27°-30°N and 124°-1 27°E, (Ⅰ), and at the northern waters about one latitude from the Taiwan Island, (Ⅱ); one in winter season at about one longitude from coast of mainland of China and 26°-30°N were found. In summer season, about 1-2 longitudes eastward shift of front (Ⅰ) is found by comparison of data in May and August. And the high alkalinity of the northern East China Sea in summer season may be caused by the Huanghe River runoff flowing southward along with the Huanghai Sea Coastal Current.展开更多
To investigate the impact of limestone powder on the chloride ion concentration coefficient of cement pastes,various techniques such as scanning electron microscopy(SEM),X-ray diffraction(XRD),thermogravimetric analys...To investigate the impact of limestone powder on the chloride ion concentration coefficient of cement pastes,various techniques such as scanning electron microscopy(SEM),X-ray diffraction(XRD),thermogravimetric analysis(TGA),and mercury-porosimetry(MIP)were employed in this paper.The findings demonstrate that the creation of Friedel's salt is inversely associated with the addition of limestone powder,that is,Friedel's salt production is lessened by adding more limestone powder,however,the coefficient of chloride ion concentration initially decreased and then increased again,as does the porosity,and most likely the pore size as well.The specific surface area of limestone powder has increased,and the content of Friedel’s salt increased first and then decreased.However,the shifting trend of Friedel's salt and chloride ion concentration coefficient is in direct opposition,and the pore structure was therefore significantly enhanced.The results of this study offer robust theoretical backing for the inclusion of limestone powder in concrete and provide a positive assessment of its potential applications.展开更多
The carbon dioxide reduction reaction(CO_(2)RR)for the synthesis of high-energy-density and high-value multi-carbon(C_(2+))products has demonstrated consider-able potential for practical applications.In this work,we d...The carbon dioxide reduction reaction(CO_(2)RR)for the synthesis of high-energy-density and high-value multi-carbon(C_(2+))products has demonstrated consider-able potential for practical applications.In this work,we design a novel copper oxide foam(OD-Cu foam)catalyst through a high-temperature calcination pro-cess,characterized by a substantial specific surface area.The distinctive three-dimensional structure of the OD-Cu foam catalyst and the metal oxide particles covered on its surface provide abundant active sites.The total Faradaic efficiency of 57.3%for C_(2+)products over the OD-Cu foam is achieved at-0.85 V versus reversible hydrogen electrode(RHE).Furthermore,the partial current density for C_(2+)products over the OD-Cu foam reaches 44.1 mA cm^(-2)at-0.95 V versus RHE,surpassing significantly that both of Cu foam(3.4 mA cm^(-2))and copper oxide foil(OD-Cu foil)(1.6 mA cm^(-2)).In addition,the integrated structure of the OD-Cu foam,which does not require complex preparation processes,facilitates its application in CO_(2)RR.These results underscore the significance of three-dimensional structure and high specific surface area,emphasizing the consider-able potential of this catalyst for effective and sustainable CO_(2)conversion.展开更多
The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon m...The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.展开更多
Leaf area index(LAI) of Teak(Tectona grandis) and Bamboo(Dendrocalamus strictus) grown in Shoolpaneshwar Wildlife Sanctuary of Narmada District,Gujarat,India was obtained by destructive sampling,photo-grid metho...Leaf area index(LAI) of Teak(Tectona grandis) and Bamboo(Dendrocalamus strictus) grown in Shoolpaneshwar Wildlife Sanctuary of Narmada District,Gujarat,India was obtained by destructive sampling,photo-grid method and by litter trap method.An allometric equation(between leaf area by litter trap method and canopy spread area) was developed for the determination of LAI.Results show that LAI value calculated by the developed allometric equation was similar to that estimated by destructive sampling and photo-grid method,with Root Mean Square Error(RMSE) of 0.90 and 1.15 for Teak,and 0.38 and 0.46 for Bamboo,respectively.There was a perfect match in both the LAI values(estimated and calculated),indicating the accuracy of the developed equations for both the species.In conclusion,canopy spread is a better and sensitive parameter to estimate leaf area of trees.The developed equations can be used for estimating LAI of Teak and Bamboo in tropics.展开更多
A series of alumina samples were prepared using β-cyclodextrin as the non-surfactant template. These samples were characterized by XRD, BET and TEM. The results showed that the alumina samples prepared using β-cyclo...A series of alumina samples were prepared using β-cyclodextrin as the non-surfactant template. These samples were characterized by XRD, BET and TEM. The results showed that the alumina samples prepared using β-cyclodextrin template had the higher surface areas (124-484 m^2/g), larger pore volumes (0.7-1.27 mL/g) and more thermal stability than samples prepared without using β-cyclodextrin.展开更多
Biochar with a highly accessible specific surface area can display a higher performance when it is used as the cathode of lithium-ion capacitors.Facing the complex composition and diversity of biomass precursors,there...Biochar with a highly accessible specific surface area can display a higher performance when it is used as the cathode of lithium-ion capacitors.Facing the complex composition and diversity of biomass precursors,there is a lack of a universally applicable method to construct hierarchical porous biochar controllably.In this work,a multi-stage activation strategy combining the feature of different activation methods is proposed for this target.To confirm the porous characteristic in prepared samples,N_(2) adsorption-desorption and transmission electron microscope were used.As the optimal sample,BC-P3K4S had the highest specific surface area of 3583.3 m^(2) g^(−1).Evaluated as the electrode for a lithium-ion capacitor,BC-P3K4S displayed a capacity of 139.1 mAh g^(−1) at 0.1 A g^(−1).After coupling it with pre-lithiated hard carbon,the full device exhibited a high energy density of 129.3 W h kg^(−1) at 153 W kg^(−1).The work outlined herein offers some insights into the preparation of hierarchical porous biochar from complex biomass by multistep activation method.展开更多
To meet the emission standard of nitrogen oxides(NOx)in the flue gas of batch furnaces through dry adsorption,a calcium-silica inorganic adsorbent was prepared with limestone and quartz as raw materials.Sample Cu-BTC ...To meet the emission standard of nitrogen oxides(NOx)in the flue gas of batch furnaces through dry adsorption,a calcium-silica inorganic adsorbent was prepared with limestone and quartz as raw materials.Sample Cu-BTC 1#was obtained by solvothermal synthesis,drying and purification in vacuum at 120℃using trimesic acid(H3BTC)and copper nitrate trihydrate(Cu(NO_(3))2·3H_(2)O)as raw materials;likewise,sample Cu-BTC 3#was obtained at 200℃.Sample Cu-BTC 2#was obtained by hydrothermal synthesis,drying and purification in air(metal-organic frameworks,1,3,5-benzene tricarboxylic acid copper).The two types of materials were tested in terms of the NO_(2) adsorption,and then the specific surface area,pore volume,NO_(2) adsorption performance,phase composition,microstructure and thermal stability of the adsorbent materials were exploredvia N_(2) physical adsorption-desorption,SEM,XRD and TG characterization.The results show that:(1)the Cu-BTC samples have higher adsorption capacity than the calcium-silica adsorbent,in which sample Cu-BTC 3#has the largest specific surface area and pore volume,thus adsorption capacity for NO_(2);(2)the calcium-silica adsorbent has better thermal stability and lower total mass loss during the entire process than the Cu-BTC samples;sample Cu-BTC 2#has the best thermal stability among the three Cu-BTC samples,and the metal Cu active sites of the Cu-BTC samples can be exposed at least above 150℃.展开更多
Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-l...Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-layer oxide structure mainly comprising an external layer of CuO followed by(Cu,Mn,Fe)_(3)O_(4)spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel.The scale area-specific resistances(ASRs)of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure.The external layer of CuO/(Cu,Mn,Fe)_(3)O_(4)spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr,but also lowered the surface scale ASRs considerably.展开更多
Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,rest...Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,restricted by the inherent capacitive storage mechanism,the carbon cathodes possess a much lower specific capacity than battery-type anodes.Therefore,designing high-performance carbon cathodes is extremely urgent for the development of PIHCs.Herein,N,O codoped porous carbon(NOPC)was fabricated through the NaCl hard template method and combined KOH/melamine chemical activation technique,displaying the characteristics of abundant N/O content(4.7 at%/16.9 at%),ultrahigh specific surface area(3092 m^(2)g^(-1))and hierarchical pore network.The designed NOPC cathode delivers a high specific capacity(164.4 mAh.g^(-1)at 0.05 A.g^(-1))and superior cyclability(95.1%retention ratio at 2 A·g^(-1)over 2500 cycles).Notably,the adjustable ratio of micropores to mesopores facilitates the achievement of the optimal bal-ance between capacity and rate capability.Moreover,the pseudocapacitance can be further augmented through the incorporation of N/O functional groups.As expected,the graphite//NOPC based PIHC possesses a high energy density of 113 Wh·kg-at 747 W·kg^(-1)and excellent capacity retention of 84.4% fter 400 cycles at 1.0 A·g^(-1).This work introduces a novel strategy for designing carbon cathodes that enhances the electrochemical performance of PIHCs.展开更多
基金Project (50930005) supported by the National Natural Science Foundation of ChinaProject (U0834002) supported by the Key Programof NSFC-Guangdong Joint Funds of China+1 种基金Project (LYM09024) supported by Training Program for Excellent Young Teachers withInnovation of Guangdong University, ChinaProject (2009ZM0121) supported by the Fundamental Research Funds for the CentralUniversities of South China University of Technology,China
文摘A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting process were first plated with a coarse copper coating layer by electroless plating process.A low-temperature sintering process was then completed at about 800 °C for 1 h under the protection of hydrogen atmosphere.The results show that a novel SMFM with complex surface morphology and high specific surface area(0.2 m2/g) can be obtained in this way.The effect of sintering temperature on the surface morphology and specific surface area of SMFM was studied by means of scanning electron microscopy and Brunauer-Emmett-Teller.The damage of micro-structure during the sintering process mainly contributed to the loss of specific surface area of SMFM and the optimal sintering temperature was 800 °C.
基金funded by the National Natural Science Foundation of China (21802058 and 21872066)the Fundamental Research Funds for the Central Universities (China, lzujbky-2020-42)the Natural Science Foundation of Gansu Province (20JR5RA225)。
文摘As a substitute for synthetic ammonia under mild condition, electrocatalytic nitrogen reduction reaction(NRR) provides a hopeful approach for the development of ammonia. Nevertheless, the current development of NRR electrocatalysts is far from enough and a systematic research is needed to gain a better improvement. This article presents that 2 D C_(3)N_(4)-NV with a large specific surface area and abundant nitrogen vacancies is prepared by a simple and feasible method, and used as a metal-free catalyst for electrocatalytic NRR. Experiment result and density functional theory(DFT) calculation reveal that nitrogen vacancies in 2 D C_(3)N_(4)-NV can act as an efficient active site for catalytic NRR, which is conducive to capturing and activating N_(2), lowering Gibbs free energy(DG) in reaction and inhibiting hydrogen evolution reaction(HER) at the same time. In addition, the larger specific surface area also makes more active site exposed, which is good for the contact between the electrolyte and the active site, thus enhancing its NRR activity. The electrocatalyst shows an excellent catalytic activity for NRR in 0.1 M HCl, including Faradaic efficiency of 10.96%, NH_(3) yields of 17.85 lg h^(-1) mg_(cat)^(-1)., and good stability(over 20 h).
基金supported by the South-Central University for Nationalities(CZZ12002)
文摘In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.
文摘Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produced by heating acid treated rice husk at 700℃ for 4 h. The isotherms of rice husk ash are similar in shape to type Ⅱof Brunaner's classification with mesopores being predominant. The rice husk ash has a high chemical reactivity,especially that pretreated with acid. This chemical reactivity depends on ashing temperature and pretreatment conditions. There is an exponential relation between the specific surface area of rice husk ash and the change in the conductivity of saturated Ca(OH)2 solution with rice husk ash, from which the specific surface area can be known according to the conductivity change.
基金the National Natural Science Foundation of China(Project No.51571027)for funding support
文摘The relationship between the specific surface area(SSA) of rust and the electrochemical behavior of rusted steel under wet-dry acid corrosion conditions was investigated. The results showed that the corrosion current density first increased and then decreased with increasing SSA of the rust during the corrosion process. The structure of the rust changed from single-layer to double-layer, and the γ-FeOOH content decreased in the inner layer of the rust with increasing corrosion time; by contrast, the γ-FeOOH content in the outer layer was constant. When the SSA of the rust was lower than the critical SSA corresponding to the relative humidity during the drying period, condensed water in the micropores of the rust could evaporate, which prompted the diffusion of O_2 into the rust and the following formation process of γ-FeOOH, leading to an increase of corrosion current density with increasing corrosion time. However, when the SSA of the rust reached or exceeded the critical SSA, condensate water in the micro-pores of the inner layer of the rust could not evaporate which inhibited the diffusion of O_2 and decreased the γ-FeOOH content in the inner rust, leading to a decrease of corrosion current density with increasing corrosion time.
文摘Effects of specific surface area and tiny amount of impurities of reactive alumina on the workability, sinte- ring and high temperature mechanical strength of corun- dum based castables were investigated. The results show that the presence of reactive alumina with high specific surface area leads to accelerating of the hydration of calcium aluminate cement, thus shortening the working time and setting time of the castables, which can be as- cribed that the critical energy barrier for stable nuclei of hydration products of cement can be reduced by the high specific surface area of reactive alumina. The sintering of the corundum based castables can be accelerated by the reactive alumina with high specific surface area and high amount of impurities, however, the reactive alumina with too high specific surface area and impurities can al- so lead to noticeable shrinkage of castables. In addition, high temperature mechanical strength of corundum based castables can be decreased by the higher amount of trace impurities of reactive alumina due to formation of low- melting phase at high temperatures.
文摘Principle and method of measuring Specific Surface Area (SSA) of ceramisite made from dredged river sediment, sewage sludge and adherent materials are discussed. Brunauer-Emmett-Teller Procedure tests SSA of the ceramisite. Influences of sewage sludge content, adherent content and sintering point on the SSA of ceramisite made of river sediment are also analyzed. Results show that with the right sewage sludge content, adherent content and sintering point, the ceramisite can have the highest SSA value and be widely used.
文摘More than 500 datasets from the literature have been used to evaluate the relationships of specific surface area (SSA),cation exchange capacity (CEC) and activity versus the liquid limit (LL).The correlations gave R^2 values ranging between 0.71 and 0.92.Independent data were also used to validate the correlations.Estimated SSA values slightly overestimate the measured SSA up to 100 m^2/g.Regarding the estimated CEC values,they overestimated the measured CEC values up to 20 meq/(100 g).A probabilistic approach was performed for the correlations of SSA,CEC and activity versus LL.The analysis shows that the relations of SSA,CEC and activity with LL are robust.Using the LL values,it is possible to assess other basic engineering properties of clays.
文摘An activated carbon with ash content less than 10% and specific surface area more than 1 600 m 2 /g was prepared from coal and the effect of K containing compounds in preparation of coal based activated carbon was investigated in detail in this paper. KOH was used in co carbonization with coal, changes in graphitic crystallites in chars derived from carbonization of coal with and without KOH were analyzed by X ray diffraction (XRD) technique, activation rates of chars with different contents of K containing compounds were deduced, and resulting activated carbons were characterized by nitrogen adsorption isotherms at 77 K and iodine numbers. The results showed that the addition of KOH to the coal before carbonization can realize the intensive removal of inorganic matters from chars under mild conditions, especially the efficient removal of dispersive quartz, an extremely difficult separated mineral component in other processes else. Apart from this, KOH demonstrates a favorable effect in control over coal carbonization with the goal to form nongraphitizable isotropic carbon precursor, which is a necessary prerequisite for the formation and development of micro pores. However, the K containing compounds such as K 2 CO 3 and K 2 O remaining in chars after carbonization catalyze the reaction between carbon and steam in activation, which leads to the formation of macro pores. In the end an innovative method, in which KOH is added to coal before carbonization and K containing compounds are removed by acid washing after carbonization, was proposed for the synthesis of quality coal based activated carbon.
基金financially supported by the National Program on Key Basic Research Project of China (973 Program, No. 2012CB215405)the National Natural Science Foundation of China (No. 51174022)
文摘Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and ordered carbon structures at high deposition temperatures. The values of I(D)/I(G) of the deposited carbon reached 1.86, 1.30, and 1.22 in the first, second, and third stages, respectively. The structure of carbon in the second stage was similar to that in the third stage. Carbon deposited in the first stage rarely contained homogeneous pyrolytic deposit layers. A kinetic model was developed to analyze the carbon deposition behavior in the first stage. The rate-determining step of the first stage is supposed to be interfacial reaction. Based on the investigation of carbon deposition kinetics on nickel powders from different resources, carbon deposition rate is suggested to have a linear relation with the square of specific surface area of nickel particles.
文摘Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a distinct seasonal variation of the alkalinity, which is concerned with the process of vertical mixing. Different specific alkalinity in various water masses has been found. On the basis of the difference of the specific alkalinity and the distribution of alkalinity, two water fronts in summer season, located at 27°-30°N and 124°-1 27°E, (Ⅰ), and at the northern waters about one latitude from the Taiwan Island, (Ⅱ); one in winter season at about one longitude from coast of mainland of China and 26°-30°N were found. In summer season, about 1-2 longitudes eastward shift of front (Ⅰ) is found by comparison of data in May and August. And the high alkalinity of the northern East China Sea in summer season may be caused by the Huanghe River runoff flowing southward along with the Huanghai Sea Coastal Current.
基金Funded by the National Natural Science Foundation of China(No.52008304)the Natural Science Foundation of Fujian Province(No.2023J05021)the Startup Foundation of Scientific Research by Fuzhou University(Nos.XRC-18016 and GXRC21060)。
文摘To investigate the impact of limestone powder on the chloride ion concentration coefficient of cement pastes,various techniques such as scanning electron microscopy(SEM),X-ray diffraction(XRD),thermogravimetric analysis(TGA),and mercury-porosimetry(MIP)were employed in this paper.The findings demonstrate that the creation of Friedel's salt is inversely associated with the addition of limestone powder,that is,Friedel's salt production is lessened by adding more limestone powder,however,the coefficient of chloride ion concentration initially decreased and then increased again,as does the porosity,and most likely the pore size as well.The specific surface area of limestone powder has increased,and the content of Friedel’s salt increased first and then decreased.However,the shifting trend of Friedel's salt and chloride ion concentration coefficient is in direct opposition,and the pore structure was therefore significantly enhanced.The results of this study offer robust theoretical backing for the inclusion of limestone powder in concrete and provide a positive assessment of its potential applications.
基金supported by the Jiangxi Gan Po Talent Support Program(20232BCJ22028).
文摘The carbon dioxide reduction reaction(CO_(2)RR)for the synthesis of high-energy-density and high-value multi-carbon(C_(2+))products has demonstrated consider-able potential for practical applications.In this work,we design a novel copper oxide foam(OD-Cu foam)catalyst through a high-temperature calcination pro-cess,characterized by a substantial specific surface area.The distinctive three-dimensional structure of the OD-Cu foam catalyst and the metal oxide particles covered on its surface provide abundant active sites.The total Faradaic efficiency of 57.3%for C_(2+)products over the OD-Cu foam is achieved at-0.85 V versus reversible hydrogen electrode(RHE).Furthermore,the partial current density for C_(2+)products over the OD-Cu foam reaches 44.1 mA cm^(-2)at-0.95 V versus RHE,surpassing significantly that both of Cu foam(3.4 mA cm^(-2))and copper oxide foil(OD-Cu foil)(1.6 mA cm^(-2)).In addition,the integrated structure of the OD-Cu foam,which does not require complex preparation processes,facilitates its application in CO_(2)RR.These results underscore the significance of three-dimensional structure and high specific surface area,emphasizing the consider-able potential of this catalyst for effective and sustainable CO_(2)conversion.
文摘The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.
基金supported by ISRO-SAC,Ahmeda-bad,and DST,New Delhi through SSS programme (Project No SR/S4/ES-21/Baroda window P2)
文摘Leaf area index(LAI) of Teak(Tectona grandis) and Bamboo(Dendrocalamus strictus) grown in Shoolpaneshwar Wildlife Sanctuary of Narmada District,Gujarat,India was obtained by destructive sampling,photo-grid method and by litter trap method.An allometric equation(between leaf area by litter trap method and canopy spread area) was developed for the determination of LAI.Results show that LAI value calculated by the developed allometric equation was similar to that estimated by destructive sampling and photo-grid method,with Root Mean Square Error(RMSE) of 0.90 and 1.15 for Teak,and 0.38 and 0.46 for Bamboo,respectively.There was a perfect match in both the LAI values(estimated and calculated),indicating the accuracy of the developed equations for both the species.In conclusion,canopy spread is a better and sensitive parameter to estimate leaf area of trees.The developed equations can be used for estimating LAI of Teak and Bamboo in tropics.
文摘A series of alumina samples were prepared using β-cyclodextrin as the non-surfactant template. These samples were characterized by XRD, BET and TEM. The results showed that the alumina samples prepared using β-cyclodextrin template had the higher surface areas (124-484 m^2/g), larger pore volumes (0.7-1.27 mL/g) and more thermal stability than samples prepared without using β-cyclodextrin.
基金National Natural Science Foundation of China(51976234)Forestry technology projects of Zhejiang Province(2023SY04)+1 种基金Foundation of Jiangsu Key Lab of Biomass Energy and Material(JSBEM-S-202101)National Nonprofit Institute Research Grant of Chinese Academy of Forestry(CAFYBB2020ZF001).
文摘Biochar with a highly accessible specific surface area can display a higher performance when it is used as the cathode of lithium-ion capacitors.Facing the complex composition and diversity of biomass precursors,there is a lack of a universally applicable method to construct hierarchical porous biochar controllably.In this work,a multi-stage activation strategy combining the feature of different activation methods is proposed for this target.To confirm the porous characteristic in prepared samples,N_(2) adsorption-desorption and transmission electron microscope were used.As the optimal sample,BC-P3K4S had the highest specific surface area of 3583.3 m^(2) g^(−1).Evaluated as the electrode for a lithium-ion capacitor,BC-P3K4S displayed a capacity of 139.1 mAh g^(−1) at 0.1 A g^(−1).After coupling it with pre-lithiated hard carbon,the full device exhibited a high energy density of 129.3 W h kg^(−1) at 153 W kg^(−1).The work outlined herein offers some insights into the preparation of hierarchical porous biochar from complex biomass by multistep activation method.
基金supported by the National Natural Science Foundation of China(No.51472220 and No.51872265)Collaborative Innovation Major Special Project of Zhengzhou(No.20XTZX12025)。
文摘To meet the emission standard of nitrogen oxides(NOx)in the flue gas of batch furnaces through dry adsorption,a calcium-silica inorganic adsorbent was prepared with limestone and quartz as raw materials.Sample Cu-BTC 1#was obtained by solvothermal synthesis,drying and purification in vacuum at 120℃using trimesic acid(H3BTC)and copper nitrate trihydrate(Cu(NO_(3))2·3H_(2)O)as raw materials;likewise,sample Cu-BTC 3#was obtained at 200℃.Sample Cu-BTC 2#was obtained by hydrothermal synthesis,drying and purification in air(metal-organic frameworks,1,3,5-benzene tricarboxylic acid copper).The two types of materials were tested in terms of the NO_(2) adsorption,and then the specific surface area,pore volume,NO_(2) adsorption performance,phase composition,microstructure and thermal stability of the adsorbent materials were exploredvia N_(2) physical adsorption-desorption,SEM,XRD and TG characterization.The results show that:(1)the Cu-BTC samples have higher adsorption capacity than the calcium-silica adsorbent,in which sample Cu-BTC 3#has the largest specific surface area and pore volume,thus adsorption capacity for NO_(2);(2)the calcium-silica adsorbent has better thermal stability and lower total mass loss during the entire process than the Cu-BTC samples;sample Cu-BTC 2#has the best thermal stability among the three Cu-BTC samples,and the metal Cu active sites of the Cu-BTC samples can be exposed at least above 150℃.
基金Funded by the Youth Science and Technology Talent Growth Project of Education Department of Guizhou Province(No.KY[2018]145)。
文摘Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-layer oxide structure mainly comprising an external layer of CuO followed by(Cu,Mn,Fe)_(3)O_(4)spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel.The scale area-specific resistances(ASRs)of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure.The external layer of CuO/(Cu,Mn,Fe)_(3)O_(4)spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr,but also lowered the surface scale ASRs considerably.
基金financially supported by the National Natural Science Foundation of China(Nos.22179123 and52002138)Taishan Scholar Program of Shandong Province+1 种基金China(No.tsqn202211048)the Fundamental Research Funds for the Central Universities(Nos.202262010 and 862201013190)。
文摘Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,restricted by the inherent capacitive storage mechanism,the carbon cathodes possess a much lower specific capacity than battery-type anodes.Therefore,designing high-performance carbon cathodes is extremely urgent for the development of PIHCs.Herein,N,O codoped porous carbon(NOPC)was fabricated through the NaCl hard template method and combined KOH/melamine chemical activation technique,displaying the characteristics of abundant N/O content(4.7 at%/16.9 at%),ultrahigh specific surface area(3092 m^(2)g^(-1))and hierarchical pore network.The designed NOPC cathode delivers a high specific capacity(164.4 mAh.g^(-1)at 0.05 A.g^(-1))and superior cyclability(95.1%retention ratio at 2 A·g^(-1)over 2500 cycles).Notably,the adjustable ratio of micropores to mesopores facilitates the achievement of the optimal bal-ance between capacity and rate capability.Moreover,the pseudocapacitance can be further augmented through the incorporation of N/O functional groups.As expected,the graphite//NOPC based PIHC possesses a high energy density of 113 Wh·kg-at 747 W·kg^(-1)and excellent capacity retention of 84.4% fter 400 cycles at 1.0 A·g^(-1).This work introduces a novel strategy for designing carbon cathodes that enhances the electrochemical performance of PIHCs.