Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of Jun...Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of June 9 through September 27, 2006, we investigated the temporal and spatial variations in surface albedo and spectral reflectance on the glacier. At site H1, the daily mean surface albedos fluctuated between 0.233 and 0.866, which were significantly affected by the air temperature on the glacier. It was found that the albedos clearly showed a diurnal cycle with the lowest value at noon at the two observation sites over the study period, and the difference of albedos between the upper site H2 and the lower site H1 also showed diurnal cycle but with the highest value at noon. The reflectance on the glacier was higher in the ultraviolet (0.28–0.4 μm) and visible (0.4–0.76 μm) wavelengths, lower in the near infrared wavelength (0.76–3 μm), which is quite contrary to the spectral reflectance on other ground surfaces. At the two observation sites, the spectral reflectance declined in all wavelengths with the ablation of snow generally. However, it declined drastically in ultraviolet (0.28–0.4 μm) and 0.6–0.7 μm wavelength, and declined less in 0.4–0.5 μm wavelength. On fresh snow surface, the spectral reflectance had the high values of 0.983 and 0.815 in the ultraviolet and visible (0.4–0.76 μm) wavelengths, respectively; but it had a relatively lower value of 0.671 in near infrared (0.76–3 μm) wavelengths. However, on dirty and melting ice surfaces, the reflectance had the very low values of 0.305 and 0.256 in the ultraviolet and visible wavelengths, with the lowest value of 0.082 in near infrared wavelengths. The spectral reflectance also showed a diurnal cycle like that of albedo. The diurnal variations of spectral reflectance on snow surface in ultraviolet and visible wavelength changed to a greater degree than that on ice surface. The diurnal variation curves were asymmetrical before and after the local noontime, but the curves on ice surfaces in every wavelength were relatively flat and symmetrical. Especially, the surface reflectance in near infrared wavelength was flat and symmetry on both snow and ice surfaces. The studies of relations between the snow albedo and snow density and impurity, and the impact of glacier albedo on the glacier runoff are also described in this paper.展开更多
Snow albedo is an important factor influencing the snow surface energy budget and snow melting, yet uncertainties remain in the calculation of spectrally resolved snow surface albedo because the spectral composition ...Snow albedo is an important factor influencing the snow surface energy budget and snow melting, yet uncertainties remain in the calculation of spectrally resolved snow surface albedo because the spectral composition (visible versus near infrared) of the incident solar radiation is seldom available. The influence of the spectral composition of the incoming solar radiation on the snow surface albedo, snow surface energy budget, and final snow ablation is investigated through sensitivity experiments of four snow seasons at two open sites in the Alps by using a multi-layer Snow-Atmosphere-Soil-Transfer scheme (SAST). Since the snow albedo in the near infrared (NIR) spectral band is significantly lower than that in the visible (VIS) band, and almost the entire NIR part of the solar radiation is absorbed in the top layer of the snow pack, given a fixed amount of incoming solar radiation, a lower VIS/NIR ratio implies that more NIR radiation is reaching the ground surface and more is absorbed by the top layer of the snow pack, therefore, speeding up the snow melting and increasing the surface runoff, although a lesser part of the solar radiation in the visible band is transmitted into and trapped by the sub-layer of the snow pack. The above VIS/NIR ratio effect of the incoming solar radiation can result in a couple of days difference in the timing of snow ablation and it becomes more significant in late spring when the total solar radiation is intensified with seasonal evolution. Snow aging also slightly intensifies this VIS/NIR ratio effect.展开更多
基金Financial support was given by the CAS International Partnership Project "The Basic Research for Water Issues of Inland River Basin in Arid Region," (CXTD-Z2005-2)National Natural Science Funds of China for Distinguished Young Scholar (40525001)National Basic Research Program of China (2005CB422003)
文摘Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of June 9 through September 27, 2006, we investigated the temporal and spatial variations in surface albedo and spectral reflectance on the glacier. At site H1, the daily mean surface albedos fluctuated between 0.233 and 0.866, which were significantly affected by the air temperature on the glacier. It was found that the albedos clearly showed a diurnal cycle with the lowest value at noon at the two observation sites over the study period, and the difference of albedos between the upper site H2 and the lower site H1 also showed diurnal cycle but with the highest value at noon. The reflectance on the glacier was higher in the ultraviolet (0.28–0.4 μm) and visible (0.4–0.76 μm) wavelengths, lower in the near infrared wavelength (0.76–3 μm), which is quite contrary to the spectral reflectance on other ground surfaces. At the two observation sites, the spectral reflectance declined in all wavelengths with the ablation of snow generally. However, it declined drastically in ultraviolet (0.28–0.4 μm) and 0.6–0.7 μm wavelength, and declined less in 0.4–0.5 μm wavelength. On fresh snow surface, the spectral reflectance had the high values of 0.983 and 0.815 in the ultraviolet and visible (0.4–0.76 μm) wavelengths, respectively; but it had a relatively lower value of 0.671 in near infrared (0.76–3 μm) wavelengths. However, on dirty and melting ice surfaces, the reflectance had the very low values of 0.305 and 0.256 in the ultraviolet and visible wavelengths, with the lowest value of 0.082 in near infrared wavelengths. The spectral reflectance also showed a diurnal cycle like that of albedo. The diurnal variations of spectral reflectance on snow surface in ultraviolet and visible wavelength changed to a greater degree than that on ice surface. The diurnal variation curves were asymmetrical before and after the local noontime, but the curves on ice surfaces in every wavelength were relatively flat and symmetrical. Especially, the surface reflectance in near infrared wavelength was flat and symmetry on both snow and ice surfaces. The studies of relations between the snow albedo and snow density and impurity, and the impact of glacier albedo on the glacier runoff are also described in this paper.
基金supported by the Ministry of Science and Technology of China under Grant Nos.2007CB411505 and 2006CB403604the Ministry of Finance of China through Grant GYHY200706005
文摘Snow albedo is an important factor influencing the snow surface energy budget and snow melting, yet uncertainties remain in the calculation of spectrally resolved snow surface albedo because the spectral composition (visible versus near infrared) of the incident solar radiation is seldom available. The influence of the spectral composition of the incoming solar radiation on the snow surface albedo, snow surface energy budget, and final snow ablation is investigated through sensitivity experiments of four snow seasons at two open sites in the Alps by using a multi-layer Snow-Atmosphere-Soil-Transfer scheme (SAST). Since the snow albedo in the near infrared (NIR) spectral band is significantly lower than that in the visible (VIS) band, and almost the entire NIR part of the solar radiation is absorbed in the top layer of the snow pack, given a fixed amount of incoming solar radiation, a lower VIS/NIR ratio implies that more NIR radiation is reaching the ground surface and more is absorbed by the top layer of the snow pack, therefore, speeding up the snow melting and increasing the surface runoff, although a lesser part of the solar radiation in the visible band is transmitted into and trapped by the sub-layer of the snow pack. The above VIS/NIR ratio effect of the incoming solar radiation can result in a couple of days difference in the timing of snow ablation and it becomes more significant in late spring when the total solar radiation is intensified with seasonal evolution. Snow aging also slightly intensifies this VIS/NIR ratio effect.